• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 7, p.593-600
https://doi.org/10.15407/ujpe60.07.0593   Paper

Borysyuk V.І.1, Yashchuk V.M.1, Naumenko A.P.1, Stanova А.V.1, Gerasova V.G.2, Gerasov А.O.3, Kovtun Yu.P.3, Shandura M.P.3, Kachkovsky O.D.3

1 Taras Shevchenko National University of Kyiv, Faculty of Physics
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
2 Taras Shevchenko National University of Kyiv, Faculty of Chemistry
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)
3 Institute of Organic Chemistry, Nat. Acad. of Sci. of Ukraine
(5, Murmans’ka Str., Kyiv 03660, Ukraine)

Influence of Surplus Negative Charge on Absorption and Fluorescence Excitation Spectra of Asymmetric Polymethine Dyes

Section: Optics, Lasers, and Quantum Electronics
Language: English

Abstract: The combined spectral and quantum-chemical investigations of the vinylog series of the asymmetric anionic polymethine dyes, derivatives of aminocoumarin, as well as the related symmetric dyes, are fulfilled. The charge injection to these types of dyes leads to the essential shifts of electronic levels. The calculations show the inverse character of the first two electron transitions in anionic polymethines and relative cationic polymethines. It is established that going to asymmetric dyes leads to a slight decrease of the spectral effect of the chromophore lengthening. The influence of the asymmetry manifests itself in a positive deviation in the absorption spectra and a negative deviation of the second electron transition manifested visually in the anisotropy of the fluorescence excitation spectra of asymmetric dyes. It is found that the lengthening of the chromophore is accompanied by an increase of the deviation of the first electron transition and, in contrast, by a decrease of the deviation of the second transition. The obtained results may be used in the design of molecular systems with prognosed current-voltage characteristics for nanoelectronics.

Key words: anion polymethine dyes, absorption spectra, fluorescence spectra, fluorescence excitation anisotropy spectra, quantum-chemical calculations, current-voltage characteristic.


  1. V.M. Yashchuk, V.Yu. Kudrya, I.O. Savchenko, R.D. Fedorovich, V.V. Cherepanov, O.A. Marchenko, A.G. Naumovets, V.M. Nechitaylo, L.O. Vretik, G.P. Golovach, Z.I. Kazantseva, and I.I. Dyoshin, Mol. Cryst. Liq. Cryst. 496, 39 (2008). CrossRef
  2. A. Mishra, Chem. Rev. 100, 1973 (2000). CrossRef
  3. G. Bach and S. Daehne, Cyanine Dyes and Related Compounds, edited by M. Sainsbury (Elsevier, Amsterdam, 1997), vol. IVb, Chapt. 15.
  4. F. Meyers, S.R. Marder, and J.W. Perry, Introducing to the Nonlinear Optical Properties of Organic Materials (WileyVCH, Weinheim, 1998), Chapt. 6.
  5. N. Tyutyulkov, J. Fabian, A. Mehlhorn, F. Dietz, and A. Tadjer, Polymethine Dyes. Structure and Properties (St. Kliment Ohridski Univ. Press, Sofia, 1991).
  6. S. Daehne, Science 199, (1978).
  7. H. Kuhn, J. Chem. Phys. 17, 1098 (1949). CrossRef
  8. J. Fabian, J. Molec. Struct. 766, 49 (2006). CrossRef
  9. A.D. Kachkovskii, O.V. Przhonska, and A.B. Ryabitzki, J. Molec. Struct. 802, 75 (2007). CrossRef
  10. F.M. Hamer, Cyanine Dyes and Related Compounds (Interscience, New York, 1964).
  11. L. Brooker, Rev. Mod. Phys. 14, 275 (1942). CrossRef
  12. A.D. Kachkovsky, Uspekhi Khim. 66, 715 (1997).
  13. A.V. Stanova, A.B. Ryabitsky, V.M. Yashchuk, O.D. Kachkovsky, A.O. Gerasov, Ya.O. Prostota, and O.V. Kropachev, J. Molec. Struct. 988, 102 (2011). CrossRef
  14. Ju. Bricks, A. Ryabitskii, and A. Kachkovskii, Eur. J. Org. Chem. 22, 3439 (2009). CrossRef
  15. Ju. Bricks, A. Ryabitskii, and A. Kachkovskii, Eur. J. Chem. 16/29, 8773 (2010). CrossRef
  16. A.O. Gerasov, M.P. Shandura, Yu.P. Kovtun, and O.D. Kachkovsky, J. Phys. Org. Chem. 21, 419 (2008). CrossRef
  17. L.A. Padilha, S. Webster, O.V. Przhonska, H. Hu, D. Peceli, T.R. Ensley, M.V. Bondar, A.O. Gerasov, Yu. P. Kovtun, M.P. Shandura, A.D. Kachkovski, D.J. Hagan, and E.W. Van Stryland, J. Phys. Chem. A 114, 6493 (2010). CrossRef
  18. A.O. Gerasov, M.P. Shandura, and Yu.P. Kovtun, Dyes Pigm. 79, 252 (2008). CrossRef
  19. J.R. Lacowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, 1983). CrossRef
  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al., GAUSSIAN03; revision B.05 (Gaussian, Pittsburgh, PA, 2003).
  21. J.L. Bredas and G.B. Street, Acc. Chem. Res. 18, 309 (1985). CrossRef
  22. J.L. Bredas, D. Belionne, J. Cornil, J.Ph. Calhert, Z. Shuai, and R. Silbey, Synth. Metals 125, 107 (2002). CrossRef
  23. A. Yu, C. Tolbert, D. Farrow, and D. Joneas, J. Phys. Chem. A 106, 9407 (2002). CrossRef
  24. T. Giamarchi, Chem. Rev. 104, 5037 (2004). CrossRef
  25. A.D. Kachkovsky, Theor. Exp. Chem. 41, 139 (2005). CrossRef
  26. M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry (McGraw-Hill, New York, 1969).
  27. W. Koenig, J. Prakt. Chem. 112, 1 (1925). CrossRef
  28. O.V. Przhonska, S. Webster, L.A. Padilha, H. Hu, A.D. Kachkovski, D.J. Hagan, and E.W. Van, in: Advanced Fluorescence Reporters in Chemistry and Biology I (Springer, Berlin, 2010).
  29. A.A. Ishchenko, Uspekhi Khim. 60, 865 (1991). CrossRef
  30. J. Fabian, Dyes Pigm. 84, 36 (2010). CrossRef