• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 6, p.538-545
https://doi.org/10.15407/ujpe60.06.0538   Paper

Raichev O.E.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: raichev@isp.kiev.ua)

Effective Hamiltonian and Dynamics of Edge States in Two-Dimensional Topological Insulators under Magnetic Fields

Section: Nanosystems
Language: English

Abstract: The magnetic field opens a gap in the edge state spectrum of two-dimensional topological insulators, thereby destroying the protection of these states against backscattering. To relate properties of this gap to parameters of the system and to study the dynamics of electrons in edge states in the presence of inhomogeneous potentials, the effective Hamiltonian theory is developed. Using this analytical theory, the quantum-mechanical problems of edge-state electron transmission through potential steps and barriers and of motion in a constant electric field are considered. The influence of a magnetic field on the resistance of two-dimensional topological insulators based on HgTe quantum wells is discussed together with comparison to experimental data.

Key words: topological insulators, HgTe quantum wells, edge states, energy gap.

References:

  1. M. K¨onig, S. Wiedmann, C. Br¨une, A. Roth, H. Buhmann, L.W. Molenkamp, X.L. Qi, and S.C. Zhang, Science 318, 766 (2007). CrossRef
  2. M. K¨onig, H. Buhmann, L.W. Molenkamp, T.L. Hughes, C.-X. Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Japan 77, 031007 (2008). CrossRef
  3. M. K¨onig, Ph.D. thesis, (W¨urzburg, 2007).
  4. A. Roth, C. Br¨une, H. Buhmann, L.W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C. Zhang, Science 325, 294 (2009). CrossRef
  5. B.A. Bernevig, T.L. Hughes, and S.C. Zhang, Science 314, 1757 (2006). CrossRef
  6. G.M. Gusev, Z.D. Kvon, O.A. Shegai, N.N. Mikhailov, S.A. Dvoretsky, and J.C. Portal, Phys. Rev. B 84, 121302(R) (2011).
  7. G.M. Gusev, E.B. Olshanetsky, Z.D. Kvon, N.N. Mikhailov, and S.A. Dvoretsky, Phys. Rev. B 87, 081311(R) (2013).
  8. J. Maciejko, X.L. Qi, and S.C. Zhang, Phys. Rev. B 82, 155310 (2010). CrossRef
  9. G. Tkachov and E.M. Hankiewicz, Phys. Rev. Lett. 104, 166803 (2010). CrossRef
  10. P. Delplace, J. Li, and M. B¨uttiker, Phys. Rev. Lett. 109, 246803 (2012). CrossRef
  11. X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011). CrossRef
  12. X.L. Qi, T.L. Hughes, and S.C. Zhang, Nature Phys. 4, 273 (2008). CrossRef
  13. V. Krueckl and K. Richter, Phys. Rev. Lett. 107, 086803 (2011). CrossRef
  14. B. Zhou, H.-Z. Lu, R.-L. Chu, S.-Q. Shen, and Q. Niu, Phys. Rev. Lett. 101, 246807 (2008). CrossRef
  15. D.G. Rothe, R.W. Reinthaler, C.X. Liu, L.W. Molenkamp, S.C. Zhang, and E.M. Hankiewicz, New J. Phys. 12, 065012 (2010). CrossRef
  16. O.E. Raichev, Phys. Rev. B 85, 045310 (2012). CrossRef
  17. A. Calogeracos and N. Dombey, Contemp. Phys. 40, 313 (1999). CrossRef
  18. S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). CrossRef
  19. R.N. Sajjad, S. Sutar, J.U. Lee, and A.W. Ghosh, Phys. Rev. B 86, 155412 (2012). CrossRef
  20. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, New York, 1977).
  21. V.V. Cheianov and V.I. Falko, Phys. Rev. B 74, 041403 (2006). CrossRef
  22. L.B. Zhang, K. Chang, X.C. Xie, H. Buhmann, and L.W. Molenkamp, New J. Phys. 12, 083058 (2010). CrossRef