• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 6, p.511-520
https://doi.org/10.15407/ujpe60.06.0511   Paper

Efremov A.A., Litovchenko V.G., Melnik V.P., Oberemok O.S., Popov V.G., Romanyuk B.M.

Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03628, Ukraine; e-mail: romb@isp.kiev.ua)

Mechanisms of Dopant Depth Profile Modification During Mass Spectrometric Analysis of Multilayer Structure

Section: Solid matter
Language: English

Abstract: Mechanisms of the spatial redistribution of components in a solid target at its ion bombardment have been analyzed theoretically. The influence of the ion mixing, crater shape, and surface roughness on the results of mass spectrometric measurements is simulated as a function of the ion energy. All the above-mentioned factors are shown to have a minimal impact on the sputtering of nano-sized Mo/Si multilayer periodic structures in the ion energy interval of 200–400 eV. Experimental studies of the dopant depth profiles and their comparison with simulation results allowed us to establish the optimum conditions for the mass spectrometric analysis and to measure the real dopant depth profiles with a depth resolution better than 1 nm.

Key words: simulation, sputtering, multilayer structure, depth profile, mass spectrometry.

References:

  1. R.G. Wilson, F.A. Stevie, and C.W. Magee, Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis (Wiley, New York, 1989).
  2. http://www.eag.com.
  3. J.C. Vickerman and D. Briggs, ToF-SIMS: Surface Analysis by Mass Spectrometry (IM Publications, Chichester, UK, 2001).
  4. I.P. Lisovskii, V.G. Litovchenko, V.B. Lozinskii, and V.P. Melnik, Thin Solid Films 247, 264 (1994). CrossRef
  5. F. Ludwig, C.R. Eddy, O. Malis, and R.L. Headrick, Appl. Phys. Lett. 81, 2770 (2002). CrossRef
  6. E. Stumpe, H. Oechsner, and H. Schoof, Appl. Phys. 20, 55 (1979). CrossRef
  7. S. Berg and I.V. Katardjiev, J. Vac. Sci. Technol. A 17, 1916 (1999). CrossRef
  8. K.O. Butarev, I.P. Koval', Yu.A.Len', and M.G. Nakhodkin, Nano-Elektron. Fiz. 5, 01025 (2013).
  9. O. Oberemok and P. Lytvyn, Semicond. Phys. Quant. Electr. Optoelectr. 5, 101 (2002).
  10. A. Goriachko, P.V. Melnik, A. Shchyrba, S.P. Kulyk, and M.G. Nakhodkin, Surf. Sci. 605, 1771 (2011). CrossRef
  11. V. Melnik, A. Misiuk, V. Popov, O. Oberemok, B. Romanyuk, D. Gamov, and P. Formanek, Ukr. J. Phys. 32, 34 (2007).
  12. V. Melnik, D. Wolanski, E. Bugiel, A. Goryachko, S. Chernjavski, and D. Kruger, Mater. Sci. Eng. B 102, 358 (2003). CrossRef
  13. Yu.P. Pershin, V.A. Sevryukova, E.N. Zubarev, A.S. Oberemok, V.P. Melnik, B.N. Romanyuk, V.G. Popov, and P.M. Litvin, Metallofiz. Noveish. Tekhnol. 35, 1617 (2013).
  14. D. Kruger, H. Ruker, B. Heinemann, V. Melnik, R. Kurps, and D. Bolze, J. Vac. Sci. Technol. B 22, 455 (2004). CrossRef
  15. A. Romanyuk, P. Oelhafen, R. Kurps, and V. Melnik, Appl. Phys. Lett. 90, 013118 (2007). CrossRef
  16. D. Kruger, B. Romanyuk, V. Melnik, Ya. Olikh, and R. Kurps, J. Vac. Sci. Technol. B 20, 1448 (2002). CrossRef
  17. R. Berish, Sputtering by Particle Bombardment (Springer, Berlin, 1981). CrossRef
  18. N.V. Kostina, Ph.D. thesis (Penza,2003) (in Russian).
  19. A.A. Efremov, Ph.D. thesis (Kyiv, 1989) (in Russian).
  20. E. Chason, P. Bedrossian, K.M. Horn, J.Y. Tsao, and S.T. Picraux, Appl. Phys. Lett. 57, 1793 (1990). CrossRef
  21. P. Bedrossian, J.E. Houston, J.Y. Tsao, E. Chason, and S.T. Picraux, Phys. Rev. Lett. 67, 124 (1991). CrossRef
  22. B. Poelsema, L.K. Verheij, and G. Comsa, Phys. Rev. Lett. 53, 2500 (1984). CrossRef
  23. R. Cerapait˙e-Truˇsinskien˙e, and A. Galdikas, Medˇziagotyra ˇ 15, 139 (2009).