• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 5, p.443-451
https://doi.org/10.15407/ujpe60.05.0443   Paper

Krasnov V.O.

Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
(1, Svientsitskii Str., Lviv 79011, Ukraine; e-mail: krasnoff@icmp.lviv.ua)

Fermion Spectrum Of Bose-Fermi-Hubbard Model In The Phase With Bose-Einstein Condensate

Section: Solid matter
Language: English

Abstract: We investigate the fermion spectrum within the Bose–Fermi–Hubbard model used for the description of boson-fermion mixtures of ultra-cold atoms in optical lattices. We used the method based on the Hubbard operator approach for an on-site basis. The equation for fermion Green’s function in the Bose–Fermi–Hubbard model is built; Green’s functions of higher orders are decoupled in the Hubbard-I approximation (the case of the strong on-site interaction). The corresponding spectral densities are calculated. In the case of hard-core bosons, the condition of appearance of additional bands in the fermion spectrum is investigated. It is shown that these bands exist only in the state with a Bose–Einstein condensate and appear because of the mixing of states with different numbers of bosons. These additional bands can be interpreted as a manifestation of composite excitations (when the appearance of a fermion on the site is accompanied by the simultaneous creation (or annihilation) of a boson).

Key words: Bose–Fermi–Hubbard model, optical lattices, Green’s function, Bose–Einstein condensate, energy spectrum.

References:

  1. M. Greiner et al., Nature, 415, 39 (2002). CrossRef
  2. S. Ospelkaus, C. Ospelkaus, O. Wille et al., Phys. Rev. Lett. 96, 180403 (2006). CrossRef
  3. A. Albus, F. Illuminati, and J. Eisert, Phys. Rev. A 68, 023606 (2003). CrossRef
  4. H.P. Buchler and G. Blatter, Phys. Rev. Lett. 91, 130404 (2003). CrossRef
  5. M. Lewenstein, L. Santos, M.A. Baranov, and H. Fehrmann, Phys. Rev. Lett. 92, 050401 (2004). CrossRef
  6. M. Iskin and J.K. Freericks, Phys. Rev. A 80, 053623 (2009). CrossRef
  7. I. Titvinidze, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 100, 100401 (2008). CrossRef
  8. T.S. Mysakovych, J. Phys.: Condens. Matter 22, 355601 (2010). CrossRef
  9. T.S. Mysakovych, Condens. Matter Phys. 14, No. 4, 43301 (2011). CrossRef
  10. I.V. Stasyuk, T.S. Mysakovych, and V.O. Krasnov, Condens. Matter Phys. 13, No. 1, 13003 (2010). CrossRef
  11. I.V. Stasyuk and V.O. Krasnov, Ukr. J. Phys. 58, 68 (2013). CrossRef
  12. J. Hubbard, Proc. Roy. Soc. Lond. A. 276, 238 (1963). CrossRef
  13. H. Fehrmann, M. Baranov, M. Lewenstein, and L. Santos, Opt. Express 12, 55 (2004). CrossRef
  14. R.M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev. B 78, 220504(R) (2008).
  15. S. Akhanjee, Phys. Rev. B 82, 075138 (2010). CrossRef
  16. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008). CrossRef