• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 5, p.428-432
https://doi.org/10.15407/ujpe60.05.0428   Paper

Bulavin L.A.1, Getalo A.M.2, Rudenko O.P.2, Khorolskyi O.V.2

1 Taras Shevchenko National University of Kyiv, Faculty of Physics
(4, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
2 V.G. Korolenko National Pedagogical University of Poltava
(2, Ostrogradskyi Str., Poltava 36000, Ukraine; e-mail: khorolskiy.alexey@gmail.com)

Influence Of Radiation On The Local Structure In A NaCl Aqueous Solution

Section: Soft matter
Language: English

Abstract: Rheological properties of normal aliphatic alcohols and their fluorinated analogs have been studied. The temperature dependences of the density and the kinematic viscosity of fluorinated and normal alcohols are shown to have the same character. The density growth for fluorinated alcohols is revealed, with the shear viscosity growing more pronouncedly, if more hydrogen atoms in the alcohol molecule are substituted by fluorine ones. The calculated thermodynamic properties of a viscous flow testify that fluorinated aliphatic alcohols are more structured in comparison with normal ones.

Key words: fluorinated aliphatic alcohols, shear viscosity, thermodynamic parameters, viscous flow.

References:

  1. B.E. Paton, O.S. Bakai, V.G. Bar'yakhtar, and I.M. Neklyudov, On the Strategy of Nuclear Energy Industry Development in Ukraine (Kharkiv Institute of Physics and Technology, Kharkiv, 2008) (in Ukrainian).
  2. L.M. Yagupolskii, Aromatic and Heterocyclic Compounds with Fluor-Containing Substituents (Kyiv, Naukova Dumka, 1988) (in Russian).
  3. L. Bulavin, Yu. Plevachuk, V. Sklyarchuk, A. Omelchuk, N. Faidiuk, R. Savchuk, I. Shtablavyy, V. Vus, and A. Yakymovych, Nucl. Eng. Design 270, 60 (2014). CrossRef
  4. L. Bulavin, Yu. Plevachuk, V. Sklyarchuk, I. Shtablavyy, N. Faidiuk, and R. Savchuk, J. Nucl. Mater. 433, 329 (2013). CrossRef
  5. S. Bhattacharjya, J. Venkatraman, A. Kumar, and P. Balaram, J. Peptide Res. 54, 100 (1999). CrossRef
  6. V. Abedalsayed, Y. Ibrahim, M. Rusyniak, M. Rabeony, and M.S. El-Shall, J. Chem. Phys. 115, 2897 (2001). CrossRef
  7. P. Trillo, A. Baeza, and C. Najera, J. Org. Chem. 77, 7344 (2012). CrossRef
  8. S. Gleston, K.J. Laider, and H. Eyring, The Theory of Absolute Rate Processes (McGraw-Hill, New York, 1941).
  9. M.I. Shakhparonov, Mechanisms of Fast Processes in Liquids (Vysshaya Shkola, Moscow, 1985) (in Russian).
  10. J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).
  11. Advances in Fluorine Compound Technology, edited by N. Ishikawa (Russian translation) (Mir, Moscow, 1984).
  12. A.V. Shakhov, Ultrazv. Termodin. Svoistva Veshch. 29, 112 (2003).
  13. M.I. Shakhparonov, Zh. Fiz. Khim. 53, 1098 (1979).
  14. T. Mamanov, Ph.D. thesis (Dushanbe, 1971).
  15. I.I. Adamenko and L.A. Bulavin, Physics of Liquids and Liquid Systems (ASMI, Kyiv, 2006) (in Ukrainian).
  16. L.A. Matyash, A.P. Rudenko, A.V. Khorolskyi, and S.A. Stetsenko, Vestn. Grodnen. Gos. Univ., Ser. 2, Mat. Vych. Tekhn. Upravl. 136, 92 (2012).