• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 5, p.401-405
https://doi.org/10.15407/ujpe60.05.0401   Paper

Ovcharenko A.I., Chesnokov E.D., Vertegel I.G., Ivanova L.S., Gnatenko Yu.P.

Institute of Physics, Nat. Acad. of Sci. of Ukraine (46, Nauky Ave., Kyiv 03680, Ukraine)

Influence Of Proton Exchange On NMR Relaxation Mechanism Of 7Li

Section: Nuclei and nuclear reactions
Language: English

Abstract: The temperature dependence of the 7Li spin-lattice relaxation time in the temperature interval 170–340 K has been studied in undoped and proton-exchanged powder specimens of LiNbO3. An anomaly in the temperature behavior of the relaxation time T1 in the temperature interval 300–340 K is revealed in both specimens, which is related to the local lattice reconstruction. On the basis of the activation energy values calculated from the T1(T) dependence, a conclusion is made that the dominant relaxation mechanism in the considered temperature interval is the tunneling of Li ions between sublattice vacancies. The difference between the activation energies for two polycrystals is explained by the transition from a symmetric three-well potential to an asymmetric one owing to the appearance of oxygen vacancies and the localization of impurity protons in the oxygen plane.

Key words: method of nuclear magnetic resonance, proton exchange, relaxation.


  1. M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1979).
  2. F.S. Chen, J. Appl. Phys. 40, 3389 (1969). CrossRef
  3. A.M. Glass, Opt. Eng. 17, 470 (1978). CrossRef
  4. G.E. Peterson, A.M. Glass, and A. Carnevale, J. Am. Ceram. Soc. 56, 278 (1973). CrossRef
  5. R.G. Smith, D.B. Fraser, and R.T. Denton, J. Appl. Phys. 39, 4620 (1968).
  6. D.A. Bryan, R. Gerson, and Y.E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984). CrossRef
  7. K.L. Sweeney, L.E. Halliburton, D.A. Bruan et al., J. Appl. Phys. 57, 1036 (1085).
  8. J.L. Jackel, C.E. Rice, and J.J. Veselka, Appl. Phys. Lett. 41, 607 (1982). CrossRef
  9. J.T. Cargo, A.J. Filo, M.C. Hughes et al., J. Appl. Phys. 67, 627 (1990). CrossRef
  10. N.K. Halstead, J. Chem. Phys. 53, 3427 (1970). CrossRef
  11. A.V. Yatsenko, Fiz. Tverd. Tela 37, 2203 (1995).
  12. E.V. Charnaya, V.T. Gabrielyan, V.T. Kasperovich et al., Ferroelectrics 202, 115 (1997). CrossRef
  13. D. Bork and P. Heitjans, J. Phys. Chem. B 102, 7303 (1998). CrossRef
  14. J.D. Stroud, R.B Creel., S.L. Segel, and R.J. Schoenberger, Canad. J. Phys. 50, 966 (1972). CrossRef
  15. D. Bork and P.N. Heitjans, J. Phys.Chem. B 105, 9162 (2001). CrossRef
  16. M. Engelsberg, G.C. do Nascimento, L.H. Pacobahyba, and R.E. de Souza, J. Appl. Phys. 74, 6427 (1993). CrossRef
  17. M. Engelsberg, R.E. de Souza, L.H. Pacobahyba, and G.C. do Nascimento, Appl. Phys. Lett. 67, 359 (1995). CrossRef
  18. R.E. de Souza, M. Engelsberg, L.H. Pacobahyba, and G.C. do Nascimento, J. Appl. Phys. 77, 408 (1995). CrossRef
  19. O.V. Yatsenko, Ukr. Fiz. Zh. 44, 382 (1999).
  20. Li Baigin, Wang Yening, and Xu Ziran, J. Phys. C 21, L251 (1988).
  21. Wang Yening, Shen Huimin, Xu Ziran, and Zhou Henan, Ferroelectr. Lett. 6, 1 (1986). CrossRef
  22. A.Ye. Lushkin, V.B. Nazarenko, K.N. Pilipchak et al., J. Phys. D 32, 9 (1995). CrossRef
  23. P. Heitjans, M. Masoud, A. Feldhoff, and M.Wilkening, Faraday Discuss. 134, 67 (2007). CrossRef