• Українська
  • English

< | >

Current issue    Ukr. J. Phys. 2015, Vol. 60, N 5, p.458-467
https://doi.org/10.15407/ujpe60.05.0458   Paper

Kondryuk D.V., Kramar V.M.

Yu. Fed’kovych Chernivtsi National University
(2, Kotsyubyns’kyi Str., Chernivtsi 58012, Ukraine; e-mail: v.kramar@chnu.edu.ua)

Thickness, Concentration, And Temperature Dependences Of Exciton Transition Energies In AlxGa1-xAs/GaAs/AlxGa1-xAs Nanofilms

Section: Nanosystems
Language: English

Abstract: The energy of transition into the ground excitonic state for a quasi-two-dimensional (nanofilm) semiconductor nanoheterostructure with single quantum well and its dependences on the thickness, temperature, and composition of the barrier medium are calculated in the dielectric continuum approximation using the Green’s function method. Specific calculations are made for a nanofilm containing a rectangular finite-depth quantum well created by the double heterojunction GaAs/AlxGa1-xAs taken as an example. For the films narrower than 30–40 nm, the transition energy is shown to be mainly governed by the confinement effect and the aluminum content x. In particular, the energy decreases rapidly from 1.55 eV (at x = 0.2), 1.62 eV (at x = 0.3), or 1.69 eV (at x = 0.4) to 1.41 eV for all those x-values, as the film thickness grows. The further increase in the film thickness up to approximately 100 nm is accompanied by a slow growth of the energy to the value characteristic of bulk GaAs, which occurs due to the corresponding reduction in the exciton binding energy. The rate of this growth depends weakly on x. The temperature increase from 0 to 300 K results in a long-wave shift of the exciton band bottom. As a result, the transition energy decreases by a value weakly depending on the film thickness and ranging from 2 meV at x = 0.2 to 3 meV at x = 0.4. The temperature-induced variations are invoked by the interaction with phonons, which are mostly confined ones in nanofilms thicker than 30–40 nm or interface ones, if nanofilms are thinner.

Key words: nanoheterostructure, quantum well, exciton, exciton-phonon coupling.


  1. E.L. Ivchenko and G.E. Pikus, Superlattices and Other Heterostructures: Symmetry and Optical Phenomena (Springer, Berlin, 1995). CrossRef
  2. E.L. Ivchenko, in Optics of Nanostructures, edited by A.V. Fedorov (Nedra, St.-Petersburg, 2005), p. 105 (in Russian).
  3. I.I. Zasavitsky, D.A. Pashkeev, A.A. Marmalyuk et al., Kvant. Elektron. 40, 95 (2010). CrossRef
  4. V. Shchukin, N.N. Ledentsov, and D. Bimberg, Epitaxy of Nanostructures (Springer, Berlin, 2004). CrossRef
  5. A.B. Krysa, J.S. Roberts, R.P. Green et al., J. Cryst. Growth 272, 682 (2004). CrossRef
  6. M.J. Manfra, arXiv:1309.2717 (2013).
  7. S. Zybell, H. Schneider, S. Winnerl et al., Appl. Phys. Lett. 99, 041103 (2011). CrossRef
  8. W. Lu, N. Li, S.C. Shen et al., in Proceedings of the 25th International Conference on Infrared and Millimeter Waves, Beijing, China, Sept. 12–15, 2000, p. 37.
  9. S. Krukovskyi, B. Koman, and N. Strukhlyak, Visn. Lviv. Univ. Ser. Fiz. 38, 276 (2005).
  10. D.M.Zayachuk, S.I. Krukovskyi, I.O. Mrykhin et al., Fiz. Khim. Tverd. Tila 6, 661 (2005).
  11. T. Sarkr and S.K. Mazumder, IEEE Trans. Electron Devices 54, 589 (2007). CrossRef
  12. A. Weerasekara, S. Matsik, M. Rinzan et al., Opt. Lett. 32, 1335 (2007). CrossRef
  13. L. Wendler and R. Pechstedt, Phys. Status Solidi B 141, 129 (1987). CrossRef
  14. K. Huang and B.F. Zhu, Phys. Rev. B 38, 13377 (1988). CrossRef
  15. N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989). CrossRef
  16. G.Q Hai, F.M. Peeters, and J.T. Devreese, Phys. Rev. B 48, 4666 (1993). CrossRef
  17. A. Thilagam and J. Singh, Appl. Phys. A 62, 445 (1996). CrossRef
  18. M.V. Tkach, Quasiparticles in Nanoheterosystems. Quantum Dots and Wires (Ruta, Chernivtsi, 2003) (in Ukrainian).
  19. V.I. Boichuk, V.A. Borusevych, and I.S. Shevchuk, J. Optoelectron. Adv. Mater. 10, 1357 (2008).
  20. V.M. Kramar and M.V. Tkach, Ukr. Fiz. Zh. 54, 1029 (2009).
  21. V.M. Kramar, Ukr. Fiz. Zh. 54, 1226 (2008).
  22. W. Trzeciakowski and B.D. McCombe, Appl. Phys. Lett. 55, 891 (1989). CrossRef
  23. Q.X. Zhao, S. Wongmanerod, M. Willander et al., Phys. Rev. B 62, 10984 (2000). CrossRef
  24. S. Adachi, J. Appl. Phys. 58, R1 (1985). CrossRef
  25. R. Zheng and M. Matsuura, Phys. Rev. B 58, 10769 (1998). CrossRef