• Українська
  • English

< | >

Current issue    Ukr. J. Phys. 2015, Vol. 60, N 4, p.334-338
https://doi.org/10.15407/ujpe60.04.0334    Paper

Sarkanych P.1, Holovatch Yu.2, Kenna R.3

1 Department for Theoretical Physics, Ivan Franko National University of Lviv
(12 Drahomanov St., 79005 Lviv, Ukraine)
2 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine
(79011 Lviv, Ukraine; e-mail: petrosark@gmail.com)
3 Applied Mathematics Research Centre, Coventry University
(Coventry CV1 5FB, UK)

On the Phase Diagram of the 2d Ising Model with Frustrating Dipole Interaction

Section: Solid matter
Language: English

Abstract: Due to intrinsic frustrations of interaction, the 2d Ising model with competing ferromagnetic short-range nearest-neighbour and antiferromagnetic long-range dipole interactions possesses a rich phase diagram. The order of the phase transition from the striped h = 1 phase to the tetragonal phase that is observed in this model has been a subject of recent controversy. We address this question by using the partition function density analysis in the complex temperature plane. Our results support the second-order phase transition scenario. To measure the strength of the phase transition, we calculate the values of specific heat critical exponent α. Along with the space dimension, it appears to depend on the ratio of strengths of the short-range and long-range interactions.

Key words: frustrations, phase transition, density of partition function zeros, critical exponents.

References:

  1. A. Giuliani, J.L. Lebowitz, and E.H. Lieb, Phys. Rev. B 74, 064420 (2006). CrossRef
  2. D. Pescia and V.L. Pokrovsky, Phys. Rev. Lett. 65, 2599 (1990). CrossRef
  3. A.B. MacIsaac, J.P. Whitehead, M.C. Robinson, and K. De'Bell, Phys. Rev. B 51, 16033 (1995). CrossRef
  4. Ar. Abanov, V. Kalatsky, V.L. Pokrovsky, and W.M. Saslow, Phys. Rev. B 51, 1023 (1995). CrossRef
  5. I. Booth, A.B. MacIsaac, J.P. Whitehead, and K. De'Bell, Phys. Rev. Lett. 75, 950 (1995). CrossRef
  6. A. Vaterlaus et al., Phys. Rev. Lett. 84, 2247 (2000). CrossRef
  7. S.A. Cannas, D.A. Stariolo, and F.A. Tamarit, Phys. Rev. B 69, 092409 (2004). CrossRef
  8. A.B. Kashuba and V.L. Pokrovsky, Phys. Rev. B 48, 10335 (1993). CrossRef
  9. P.M. Gleiser, F.A. Tamarit, and S.A. Cannas, Physica D 73, 168 (2002).
  10. E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 73, 144418 (2006). CrossRef
  11. E. Rastelli, S. Regina, and A. Tassi, Phys. Rev. B 76, 054438 (2007). CrossRef
  12. J.S.M. Fonseca, L.G. Rizzi, and N.A. Alves, Phys. Rev. E 86, 011103 (2012). CrossRef
  13. M.E. Fisher, in: Lecture in Theoretical Physics, Vol. VIIC, ed. W.E. Brittin (Gordon and Breach, New York, 1968); p. 1.
  14. W. Janke and R. Kenna, J. Stat. Phys. 102, 1211 (2001). CrossRef
  15. A.B. MacIsaac, J.P. Whitehead, K. De'Bell, and K.S. Narayanan, Phys. Rev. B 46, 6387 (1992). CrossRef
  16. C.N. Yang and T.D. Lee, Phys. Rev. 87, 404 (1952). CrossRef
  17. R. Abe, Prog. Theor. Phys. 37, 1070 (1967); CrossRef Prog. Theor. Phys. 38, 72 (1967); CrossRef Prog. Theor. Phys. 38, 322 (1967); CrossRef Prog. Theor. Phys. 38, 568 (1967). CrossRef
  18. M. Suzuki, Prog. Theor. Phys. 38, 289 (1967); CrossRef Prog. Theor. Phys. 38, 1225 (1967); CrossRef Prog. Theor. Phys. 38, 1243 (1967); CrossRef Prog. Theor. Phys. 39, 349 (1968). CrossRef
  19. C. Itzykson, R.B. Pearson, and J.B. Zuber, Nucl. Phys. B 220 [FS8], 415 (1983). CrossRef