• Українська
  • English

< | >

Current issue    Ukr. J. Phys. 2015, Vol. 60, N 4, p.297-308
https://doi.org/10.15407/ujpe60.04.0297    Paper

Vasilevsky V.S., Soloha-Klymchak M.D.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: VSVasilevsky@gmail.com)

T-Matrix in Discrete Oscillator Representation

Section: Nuclei and nuclear reactions
Language: English

Abstract: We investigate T-matrix for bound and continuous-spectrum states in the discrete oscillator representation. The investigation is carried out for a model problem – the particle in the field of a central potential. A system of linear equations is derived to determine the coefficients of the T-matrix expansion in the oscillator functions. We selected four potentials (Gaussian, exponential, Yukawa, and square-well ones) to demonstrate peculiarities of the T-matrix and its dependence on the potential shape. We also study how the T-matrix expansion coefficients depend on the parameters of the oscillator basis such as the oscillator length and the number of basis functions involved in calculations.

Key words: T-matrix, oscillator basis, scattering, convergence.

References:

  1. G.F. Filippov and I.P. Okhrimenko, Sov. J. Nucl. Phys. 32, 480 (1981).
  2. G.F. Filippov, Sov. J. Nucl. Phys. 33, 488 (1981).
  3. E.J. Heller and H.A. Yamani, Phys. Rev. A 9, 1201 (1974). CrossRef
  4. H.A. Yamani and L. Fishman, J. Math. Phys. 16, 410 (1975). CrossRef
  5. The J-Matrix Method. Developments and Applications, edited by A.D. Alhaidari, H.A. Yamani, E.J. Heller, and M.S. Abdelmonem (Springer, Berlin, 2008).
  6. O.A. Rubtsova and V.I. Kukulin, Phys. At. Nucl. 64, 1799 (2001). CrossRef
  7. F. Arickx, J. Broeckhove, P.V. Leuven, V. Vasilevsky, and G. Filippov, Amer. J. Phys. 62, 362 (1994). CrossRef
  8. V.S. Vasilevsky and F. Arickx, Phys. Rev. A 55, 265 (1997). CrossRef
  9. J. Broeckhove, V. Vasilevsky, F. Arickx, and A. Sytcheva, ArXiv Nuclear Theory e-prints, nucl-th/0412085 (2004).
  10. J. Broeckhove, V.S. Vasilevsky, F. Arickx, and A.M. Sytcheva, in The J-Matrix Method. Developments and Applications, edited by A.D. Alhaidari, H.A. Yamani, E.J. Heller, and M.S. Abdelmonem (Springer, Berlin, 2008), p. 117. CrossRef
  11. R.G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).
  12. H. Friedrich, Scattering theory (Springer, Berlin, 2013). CrossRef
  13. Y.I. Nechaev and Y.F. Smirnov, Sov. J. Nucl. Phys. 35, 808 (1982).
  14. E.J. Heller, Phys. Rev. A 12, 1222 (1975). CrossRef
  15. L.P. Kok, J.W. de Maag, H.H. Brouwer, and H. van Haeringen, Phys. Rev. C 26, 2381 (1982). CrossRef
  16. T. Dolinszky, J. Phys. G. Nucl. Phys. 10, 1639 (1984). CrossRef
  17. G.F. Filippov, V.S. Vasilevsky, and L.L. Chopovsky, Sov. J. Part. Nucl. 15, 600 (1984).
  18. G.F. Filippov, V.S. Vasilevsky, and L.L. Chopovsky, Sov. J. Part. and Nucl. 16, 153 (1985).
  19. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, New York, 1967).
  20. V.V. Babikov, Phase Function Method in Quantum Mechanics (Nauka, Moscow, 1976) (in Russian).
  21. J. Broeckhove, F. Arickx, W. Vanroose, and V.S. Vasilevsky, J. Phys. A Math. Gen. 37, 7769 (2004). CrossRef