• Українська
  • English

< | >

Current issue    Ukr. J. Phys. 2015, Vol. 60, N 4, p.351-355
https://doi.org/10.15407/ujpe60.04.0351    Paper

Strikha M.V.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: maksym_strikha@hotmail.com)

Frequency Limits for Conducting Graphene Channel Caused by Quantum Capacitance and Kinetic Inductance

Section: Solid matter
Language: Ukrainian

Abstract: By analyzing the Boltzmann kinetic equation for mesosystems, it is shown that the quantum capacitance and the kinetic inductance, which are analogs of the electrostatic capacitance and the magnetic inductance, respectively, have to be taken into consideration while studying the dynamic conductivity of a graphene channel, despite their different physical nature. The account of the quantum conductance and the kinetic inductivity leads to the appearance of a maximum of the impedance. In the case where the graphene channel is an ideal Landauer resistor crossed by an electron without scattering, this maximum corresponds to the THz range (therefore, the effect does not worsen the frequency characteristics of graphene FETs operating in the GHz range). However, for massive graphene channels fabricated with the use of the CVD method, where the electron transport has the diffusive nature, this maximum corresponds to the kHz or MHz range depending on the carrier mobility and the channel length.

Key words: graphene conducting channel, Boltzmann kinetic equation, quantum capacitance, kinetic inductance.

References:

  1. S. Datta, Lessons from Nanoelectronics: A New Perspective on Transport (World Scientific, Hackensack, NJ, 2012). CrossRef
  2. Yu.A. Kruglyak, N.E. Kruglyak, and M.V. Strikha, Sensor. Elektr. Mikrosyst. Tekhnol. 9, No. 4, 5 (2012).
  3. M. Fisher and L.I. Glazman, in Mesoscopic Electron Transport (Kluwer, Norwell, MA, 1997), p. 331. CrossRef
  4. Y.M. Blanter, F.W.J. Hekking, and M. Buttiker, Phys. Rev. Lett. 81, 1925 (1998). CrossRef
  5. K.V. Pham, Eur. Phys. J. B 36, 607 (2003). CrossRef
  6. S. Salahuddin, M. Lundstrom, and S. Datta, IEEE Trans. Electron Devices 52, 1734 (2005). CrossRef
  7. J. Chauhan and J. Guo, Nano Res. 4, 571 (2011). CrossRef
  8. J. Zheng, L. Wang, R. Quhe et al., Sci. Rep. 3, 1314 (2013).
  9. A.N. Obraztsov. Nature Nanotechn. 4, 212 (2009). CrossRef
  10. C.-C. Kalmbach, J. Schurr, F.J. Ahlers et al., Appl. Phys. Lett. 105, 073511 (2014). CrossRef
  11. S. Das Sarma, Sh. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011). CrossRef
  12. O. Nazarov et al. (unpublished).