• Українська
  • English

<Previous issue | >

Current issue    Ukr. J. Phys. 2015, Vol. 60, N 4, p.289-296
https://doi.org/10.15407/ujpe60.04.0289    Paper

Gorbar E.V.1,2

1 Faculty of Physics, Taras Shevchenko National Kiev University
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
2 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: gorbar@bitp.kiev.ua)

Chiral Asymmetry in Magnetized Dense Relativistic Matter and Pulsar Kicks

Section: Fields and elementary particles
Language: English

Abstract: The weak interactions of neutrinos with charged fermions in a magnetized dense relativistic matter are shown to generate a non-zero chiral shift parameter for neutrinos that produces their asymmetric distribution in the momentum space in the equilibrium state. It is found that this asymmetry is too small in order to explain the largest pulsar velocities observed. The hot-spot scenario involving the topological current or some other mechanism of the hot spot formation is suggested, and it is argued that this scenario can provide the necessary large pulsar kicks.

Key words: dense relativistic matter, magnetic field, pulsar kick.

References:

  1. P.M. Woods and C. Thompson, in Compact Stellar X-ray Sources, edited by W.H.G. Lewin and M. van der Klis, (Cambridge Univ. Press, Cambridge, 2006) p. 547 [astroph/0406133]. CrossRef
  2. S. Mereghetti, Astron. Astrophys. Rev. 15, 225 (2008). CrossRef
  3. D. Page and S. Reddy, Ann. Rev. Nucl. Part. Sci. 56, 327 (2006). CrossRef
  4. S. Chatterjee et al., Astrophys. J. 630, L61 (2005). CrossRef
  5. A. Vilenkin, Phys. Rev. D 22, 3080 (1980). CrossRef
  6. M.A. Metlitski and A.R. Zhitnitsky, Phys. Rev. D 72, 045011 (2005). CrossRef
  7. E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. C 80, 032801(R) (2009).
  8. A.G. Lyne and D.R. Lorimer, Nature 369, 127 (1994); CrossRef J.M. Cordes and D.F. Chernoff, Astrophys. J. 505, 315 (1998); CrossRef B.M.S. Hansen and E.S. Phinney, Mon. Not. Roy. Astron. Soc. 291, 569 (1997); CrossRef C. Fryer, A. Burrows, and W. Benz, Astrophys. J. 496, 333 (1998); CrossRef Z. Arzoumanian, D.F. Chernoffs, and J.M. Cordes, Astrophys. J. 568, 289 (2002). CrossRef
  9. E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. D 83, 085003 (2011). CrossRef
  10. A. Kusenko, G. Segre, and A. Vilenkin, Phys. Lett. B 437, 359 (2008). CrossRef
  11. I. Sagert and J. Schaffner-Bielich, J. Phys. G 35, 014062 (2008); CrossRef Astron. Astrophys. 489, 281 (2008). CrossRef
  12. C.L. Fryer and A. Kusenko, Astrophys. J. Suppl. 163, 335 (2006). CrossRef
  13. J. Charbonneau and A. Zhitnitsky, Phys. Rev. C 76, 015801 (2007). CrossRef
  14. J. Charbonneau and A. Zhitnitsky, JCAP 1008, 010 (2010).
  15. G.M. Newman and D. Son, Phys. Rev. D 73, 045006 (2006). CrossRef
  16. K. Fukushima, Lect. Notes Phys. 871, 241 (2013).
  17. D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007). CrossRef
  18. D.E. Kharzeev, L.D. McLerran, and H.J. Warringa, Nucl. Phys. A 803, 227 (2008). CrossRef
  19. D. Kharzeev, Phys. Lett. B 633, 260 (2006). CrossRef
  20. K. Fukushima, D.E. Kharzeev, and H.J. Warringa, Phys. Rev. D 78, 074033 (2008). CrossRef
  21. B.I. Abelev et al. [STAR Collaboration], Phys. Rev. Lett. 103, 251601 (2009); CrossRef Phys. Rev. C 81, 054908 (2010). CrossRef
  22. L. Adamczyk et al. [STAR Collaboration], arXiv:1303.0901 [nucl-ex].
  23. G. Wang [STAR Collaboration], arXiv:1210.5498 [nucl-ex].
  24. H. Ke [STAR Collaboration], J. Phys. Conf. Ser. 389, 012035 (2012). CrossRef
  25. I. Selyuzhenkov [ALICE Collaboration], Prog. Theor. Phys. Suppl. 193, 153 (2012). CrossRef
  26. S.A. Voloshin, Phys. Rev. C 70, 057901 (2004). CrossRef
  27. D.E. Kharzeev, Ann. Phys. 325, 205 (2010);
     CrossRef K. Fukushima, D.E. Kharzeev, and H.J. Warringa, Nucl. Phys. A 836, 311 (2010). CrossRef
  28. J. Charbonneau, K. Hoffman, and J. Heyl, Mon. Not. R. Astron. Soc. 404, L119 (2010). CrossRef
  29. C.J. Horowitz and G. Li, Phys. Rev. Lett. 80, 3694 (1998); erratum-ibid. 81, 1985 (1998).
  30. D. Lai and Y.-Z. Qian, Astrophys. J. 495, L103 (1998). CrossRef
  31. Ph. Arras and D. Lai, arXiv:astro-ph/9806285.
  32. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978); ibid., 20, 2634 (1979).
  33. S.P. Mikheyev and A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985); Nuovo Cim. C 9, 17 (1986); CrossRef Sov. Phys. JETP 64, 4 (1986).
  34. M.C. Gonzalez-Garcia and Y. Nir, Rev. Mod. Phys. 75, 345 (2003). CrossRef
  35. C. Itzykson and J.-B. Zuber, Quantum Field Theory (McGraw-Hill, New York, 1980).
  36. T.K. Kuo and J. Pantaleone, Rev. Mod. Phys. 61, 937 (1989). CrossRef
  37. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, and Xinyang Wang, Phys. Rev. 88, 025043 (2013).
  38. M. Ruderman and P.G. Sutherland, ApJ 196, 51 (1975). CrossRef
  39. G. Greenstein and G.J. Hartke, ApJ 271, 283 (1983). CrossRef
  40. J.S. Hey and L. Hernquist, Astrophys. J. 567, 510 (2002). CrossRef
  41. A. De Luca, P.A. Caraveo, S. Mereghetti, M. Negroni, and G.F. Bigmani, Astrophys. J. 623, 1051 (2005). CrossRef
  42. S.L. Shapiro and S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (Wiley, New York, 1983). CrossRef
  43. D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, and P. Haensel, Phys. Reports 354, 1 (2001). CrossRef