• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N3, p.268-272
https://doi.org/10.15407/ujpe60.03.0268    Paper

Minailova I.A.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine; e-mail: bserdega@gmail.com)

Polarized Radiation Interferometry Research of Thermoelasticity in Silicon Crystal with the Use of Modulation Polarimetry

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: By registering the polarization state of probing radiation transmitted through a silicon crystal wafer, the optical anisotropy induced in the crystal by the heat flow from an external contact heater has been studied. The modulation polarimetry technique is used, the high resolution of which allowed the measurements to be made under conditions of the low temperature gradient and, hence, temperature-independent coefficients. A superposition of two- and multibeam interferences of circularly polarized radiation is detected. It is shown that the corresponding parameters provide information on the magnitude of mechanical stresses (dielectric anisotropy), as well as on some optical coefficients.

Key words: modulation polarimetry, thermoelasticity, photoelasticity, polarized radiation interference, mechanical stress.

References:

  1. A.D. Kovalenko, Thermoelasticity. Basic Theory and Applications (Walters-Noordhoff, Groningen, 1969).
  2. T. Iwaoka, S. Yokogama, and Y. Osaka, Jpn. J. Appl. Phys. 24, 112 (1984). CrossRef
  3. I.I. Vlasov, V.G. Ralchenko, E.D. Obraztsova, A.A. Smolin, and V.I. Konov, Appl. Phys. Lett. 71, 1789 (1997). CrossRef
  4. B. Eigenmann, B. Scholtes, and E. Macherauch, Mater. Sci. Eng. A 118, 1 (1989). CrossRef
  5. M.R. Daymond, M.A. Bourke, and R.B. Von Dreele, B. Clausen, and T.J. Lorentzen, J. Appl. Phys. 82, 1554 (1997). CrossRef
  6. M. Ceretti, C. Braham, J.L. Lebrun, J.P. Bonnafe, M. Perrin, and A. Lodini, Exp. Techniques 20, No. 3, 14 (1996). CrossRef
  7. E.S. Gorkunov and M.V. Tartachnaya, Zav. Laborat. 59, 22 (1993).
  8. G.N. Chernyshev, A.L. Popov, V.M. Kozintsev, and I.I. Ponomarev, Residual Stresses in Deformed Solids (Nauka, Moscow, 1996) (in Russian).
  9. M.J. Pechersky, R.F. Miller, and C.S. Vikram, Opt. Eng. 34, 2964 (1995). CrossRef
  10. C.S. Vikram, M.J. Pechersky, C. Feng, and D. Engelhaupt, Exp. Techniques 20, No. 6, 27 (1996). CrossRef
  11. A.Ya. Aleksandrov and M.Kh. Akhmetzyanov, Polarization Optical Methods of Mechanics of Deformable Solids (Nauka, Moscow, 1973) (in Russian).
  12. Yu.I. Sirotin and M.P. Shaskolskaya, Fundamentals of Crystal Physics (Imported Publ., Chicago, 1983).
  13. B.K. Serdega, Modulation Polarimetry (Naukova Dumka, Kyiv, 2011) (in Ukrainian).
  14. M. Qian, Chinese J. Acoust. 14, No. 2, 97 (1995).
  15. R.M. Burbelo and M.K. Zhabitenko, in Progress in Natural Science (Taylor and Francis, London, 1996), Suppl. Vol. 6, p. 720.
  16. R.M. Burbelo, A.L. Gulyaev, L.I. Robur et al., J. Phys. (Paris) C7 4, 311 (1994).
  17. H. Zhang, S. Gissinger, G. Weides, and U. Netzelmann, J. Phys. (Paris) C7 4, 603 (1994).
  18. K.L. Muratikov, A.L. Glazov, and D.N. Rose, J.E. Dumar, and G.H. Quay, Pis'ma Zh. Tekhn. Fiz. 26, No. 5, 44 (1997).
  19. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1989).
  20. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, Cambridge, 1999). CrossRef
  21. A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994).
  22. I.E. Matyash, I.A. Minailova, O.N. Mishchuk, and B.K. Serdega, Fiz. Tverd. Tela 55, 1003 (2013).
  23. S.A. Akhmanov and S.Yu. Nikitin, Physical Optics (Clarendon Press, Oxford, 1997).