• Українська
  • English

<Previous issue | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N3, p.181-200
https://doi.org/10.15407/ujpe60.03.0181    Paper

Bugaev K.A.1, Ivanytskyi A.I.1, Oliinychenko D.R.1,2, Nikonov E.G.3, Sagun V.V.1, Zinovjev G.M.1

1 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: bugaev@th.physik.uni-frankfurt.de,a_iv_@ukr.net, dimafopf@gmail.com, v_sagun@ukr.net)
2 FIAS, Goethe-University
(1, Ruth-Moufang Str., 60438 Frankfurt upon Main, Germany)
3 Laboratory for Information Technologies, JINR
(Dubna 141980, Russia; e-mail: e.nikonov@jinr.ru)

Non-Smooth Chemical Freeze-Out and Apparent Width of Wide Resonances and Quark Gluon Bags in a Thermal Environment

Section: Fields and elementary particles
Original Author's Text: Ukrainian

Abstract: We develop a hadron resonance gas model with the Gaussian width of hadron resonances. This model allows us to treat the usual hadrons and the quark gluon bags on the same footing and to study the stability of the results obtained within different formulations of the hadron resonance gas model. We perform a successful fit of 111 independent hadronic multiplicity ratios measured in nuclear collisions at the center-of-mass energies √SNN = 2.7–200 GeV. We demonstrate also that, in a narrow range of the collision energy √SNN = 4.3–4.9 GeV, there exist the peculiar irregularities in various thermodynamic quantities found at the chemical freeze-out. The most remarkable irregularity is an unprecedented jump of the number of effective degrees of freedom observed in this narrow energy range, which is seen in all realistic versions of the hadron resonance gas model, including the model with the Breit–Wigner parametrization of the resonance width and the one with a zero width of all resonances. Therefore, the developed concept is called the non-smooth chemical freeze-out. We are arguing that these irregularities evidence the possible formation of quark gluon bags. In order to develop other possible signals of their formation, we study the apparent width of wide hadronic resonances and quark gluon bags in a thermal environment. Two new effects generated for the wide resonances and the quark gluon bags by a thermal medium are discussed here: the near-threshold thermal resonance enhancement and the near-threshold thermal resonance sharpening. These effects are also analyzed for the Breit–Wigner width parametrization. It is shown that, if the resonance decay thresholds are located far away from the peak of the resonance mass attenuation, then such a width parametrization leads to a stronger enhancement of the resonance pressure, as compared with the Gaussian one. On the basis of the new effects, we argue that the most optimistic chance to find experimentally the quark gluon bags may be related to their sharpening and enhancement in a thermal medium. In this case, the wide quark gluon bags can appear directly or in decays as narrow resonances that are absent in the tables of elementary particles and have the apparent width about 50–120 MeV and the mass about or above 2.5 GeV.

Key words: chemical freeze-out, wide resonance enhancement, width sharpening.

References:

  1. A. Chodos et al., Phys. Rev. D 9, 3471 (1974). CrossRef
  2. J.I. Kapusta, Phys. Rev. D 10, 2444 (1981). CrossRef
  3. R. Hagedorn, Suppl. Nuovo Cimento 3, 147 (1965).
  4. R. Hagedorn and J. Ranft, Suppl. Nuovo Cimento 6, 169 (1968).
  5. C.J. Hamer and S.C. Frautschi, Phys. Rev. D 4, 2125 (1971). CrossRef
  6. K.A. Bugaev, Phys. Rev. C 76, 014903 (2007). CrossRef
  7. K.A. Bugaev, Phys. Atom. Nucl. 71, 1615 (2008). CrossRef
  8. K.A. Bugaev, Phys. Part. Nucl. 38, 447 (2007). CrossRef
  9. A.I. Ivanytskyi, Nucl. Phys. A 880, 12 (2012). CrossRef
  10. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Part. Nucl. Lett. 9, 397 (2012); and Phys. Atom. Nucl. 76, 341 (2013).
  11. A.I. Ivanytskyi, K.A. Bugaev, A.S. Sorin, and G.M. Zinovjev, Phys. Rev. E 86, 061107 (2012). CrossRef
  12. I. Zakout, C. Greiner, and J. Schaffner-Bielich, Nucl. Phys. A 781, 150 (2007) and references therein. CrossRef
  13. I. Zakout and C. Greiner, Phys. Rev. C 78, 034916 (2008). CrossRef
  14. I. Zakout and C. Greiner, arXiv:1002.3119 [nucl-th].
  15. L. Ferroni and V. Koch, Phys. Rev. C 79, 034905 (2009). CrossRef
  16. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Europhys. Lett. 85, 22002 (2009). CrossRef
  17. K.A. Bugaev, V.K. Petrov, and G.M. Zinovjev, Phys. Rev. C 79, 054913 (2009). CrossRef
  18. D.B. Blaschke and K.A. Bugaev, Fizika B13, 491 (2004); Prog. Part. Nucl. Phys. 53, 197 (2004); CrossRef Phys. Part. Nucl. Lett. 2, 305 (2005).
  19. J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993). CrossRef
  20. A. Andronic, P. Braun-Munzinger, and J. Stachel, Nucl. Phys. A 772, 167 (2006) and references therein. CrossRef
  21. A. Andronic, P. Braun-Munzinger, and J. Stachel, Phys. Lett. B 673, 142 (2009);; Erratum-ibid. 678, 516 (2009) and references therein.
  22. D.R. Oliinychenko, K.A. Bugaev, and A.S. Sorin, Ukr. J. Phys. 58, 211 (2013); CrossRef Ukr. J. Phys. 58, 939 (2013). CrossRef
  23. K.A. Bugaev, D.R. Oliinychenko, A.S. Sorin, and G.M. Zinovjev, Eur. Phys. J. A 49, 30 (2013). CrossRef
  24. K.A. Bugaev et al., Europhys. Lett. 104, 22002 (2013). CrossRef
  25. J. Stachel, A. Andronic, P. Braun-Munzinger, and K. Redlich, arXive:1311.4662v1 [nucl-th].
  26. C. Amsler et al., Phys. Lett. B 667, 1 (2008) [http://pdg.lbl.gov]. CrossRef
  27. K.A. Bugaev and G.M. Zinovjev, Ukr. J. Phys. 55, 586 (2010).
  28. V.V. Sagun, A.I. Ivanytskyi, K.A. Bugaev, and I.N. Mishustin, Nucl. Phys. A 924, 24 (2014). CrossRef
  29. W. Broniowski, W. Florkowski, and L.Y. Glozman, Phys. Rev. D 70, 117503 (2004). CrossRef
  30. A. Andronic, P. Braun-Munzinger, and J. Stachel, Acta Phys. Polon. B 40, 1005 (2009).
  31. J. Cleymans and D. Worku, Mod. Phys. Lett. A 26, 1197 (2011). CrossRef
  32. D. Hahn and H. St¨ocker, Nucl. Phys. A 452, 723 (1986). CrossRef
  33. K.G. Denisenko and St. Mrowczynski, Phys. Rev. C 35, 1932 (1987). CrossRef
  34. M.I. Gorenstein, St. Mrowczynski, and D.H. Rischke, Phys. Lett. B 243, 327 (1990). CrossRef
  35. J. Sollfrank, P. Koch, and U. Heinz, Z. Phys. C 52, 593 (1991). CrossRef
  36. K.A. Bugaev, M.I. Gorenstein, and D.H. Rischke, Phys. Lett. B 255, 18 (1991). CrossRef
  37. K.A. Bugaev, E.G. Nikonov, A.S. Sorin, and G.M. Zinovjev, JHEP 02, 059 (2011); Ukr. J. Phys. 56, 611 (2011).
  38. S. Wheaton, J. Cleymans, and M. Hauer, Comput. Phys. Commun., 180, 84 (2009). CrossRef
  39. W. Weinhold, B. Friman, and W. N¨orenberg, Phys. Lett. B 433, 236 (1998). CrossRef
  40. H. van Hees and R. Rapp, Phys. Lett. B 606, 59 (2005). CrossRef
  41. M. Effenberger, E.L. Bratkovskaya, and U. Mosel, Phys. Rev. C 60, 044614 (1999). CrossRef
  42. M. Effenberger and U. Mosel, Phys. Rev. C 60, 051901 (1999); CrossRef A.B. Larionov and U. Mosel, Phys. Rev. C 66, 034902 (2002). CrossRef
  43. V.I. Kuksa, Phys. Part. Nucl. (in Russian) 45, 998 (2014) and references therein. CrossRef
  44. J.L. Klay et al., Phys. Rev. C 68, 054905 (2003). CrossRef
  45. L. Ahle et al., Phys. Lett. B 476, 1 (2000); CrossRef Phys. Lett. B 490, 53 (2000). CrossRef
  46. B.B. Back et al., Phys. Rev. Lett. 86, 1970 (2001). CrossRef
  47. J.L. Klay et al., Phys. Rev. Lett. 88, 102301 (2002). CrossRef
  48. C. Pinkenburg et al., Nucl. Phys. A 698, 495c (2002). CrossRef
  49. P. Chung et al., Phys. Rev. Lett. 91, 202301 (2003). CrossRef
  50. S. Albergo et al., Phys. Rev. Lett. 88, 062301 (2002). CrossRef
  51. B.B. Back et al., Phys. Rev. Lett. 87, 242301 (2001). CrossRef
  52. B.B. Back et al., Phys. Rev. C 69, 054901 (2004). CrossRef
  53. S.V. Afanasiev et al., Phys. Rev. C 66, 054902 (2002). CrossRef
  54. S.V. Afanasiev et al., Phys. Rev. C 69, 024902 (2004). CrossRef
  55. T. Anticic et al., Phys. Rev. Lett. 93, 022302 (2004). CrossRef
  56. S.V. Afanasiev et al., Phys. Lett. B 538, 275 (2002). CrossRef
  57. C. Alt et al., Phys. Rev. Lett. 94, 192301 (2005). CrossRef
  58. S.V. Afanasiev et al., Phys. Lett. B 491, 59 (2000). CrossRef
  59. J. Adams et al., Phys. Rev. Lett. 92, 182301 (2004). CrossRef
  60. J. Adams et al., Phys. Lett. B 567, 167 (2003). CrossRef
  61. C. Adler et al., Phys. Rev. C 65, 041901(R) (2002).
  62. J. Adams et al., Phys. Rev. Lett. 92, 112301 (2004). CrossRef
  63. J. Adams et al., Phys. Lett. B 612, 181 (2005). CrossRef
  64. A. Billmeier et al., J. Phys. G 30, S363 (2004). CrossRef
  65. K.A. Bugaev et al., arXiv:1405.3575 [hep-ph] (accepted to Phys. Part. Nucl. Lett.).
  66. M. Gazdzicki and M.I. Gorenstein, Acta Phys. Polon. B 30, 2705 (1999).
  67. see, e.g., J. Cleymans, H. Oeschler, K. Redlich, and S. Wheaton, Phys. Rev. C 73, 034905 (2006). CrossRef
  68. V.V. Begun, M. Gazdzicki, and M.I. Gorenstein, Phys. Rev. C 88, 024902 (2013). CrossRef
  69. V.V. Begun, M. Gazdzicki, and M.I. Gorenstein, Contribution 2.8 to the NICA White Paper, version 9.02, 7 of June, 2013. http://theor.jinr.ru/twiki/pub/NICA/ NICAWhitePaper.
  70. M. Gazdzicki, Z. Phys. C 66, 659 (1995); CrossRef J. Phys. G 23, 1881 (1997). CrossRef
  71. M.I. Gorenstein, M. Gazdzicki, and K.A. Bugaev, Phys. Lett. B 567, 175 (2003). CrossRef
  72. M. Gazdzicki, M. Gorenstein, and P. Seyboth, Acta Phys. Polon. B 42, 307 (2011). CrossRef
  73. J. Engels, F. Karsch, J. Montway, and H. Satz, Nucl. Phys. B 205, 545 (1982). CrossRef
  74. T. Celik, J. Engels, and H. Satz, Nucl. Phys. B 256, 670 (1985). CrossRef
  75. M. Cheng et al., Phys. Rev. D 77, 014511 (2008). CrossRef
  76. BNL-Bielefeld Collaboration, Phys. Rev. D 83, 014504 (2011). CrossRef
  77. C.S. Rolfs and W.S. Rodney, Cauldrons in the Cosmos (Univ. of Chicago Press, Chicago, 1986).
  78. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, Weinheim, 2007). CrossRef
  79. R. Garcia-Martin, J.R. Pelaez, and F.J. Yndurain, Phys. Rev. D 76, 074034 (2007). CrossRef
  80. F. Karsch, Prog. Theor. Phys. Suppl. 168, 237 (2007). CrossRef
  81. Y. Aoki et al., Phys. Lett. B 643, 46 (2006); CrossRef Y. Aoki et al., JHEP 06, 088 (2009).