• Українська
  • English

< | Next issue>

Ukr. J. Phys. 2015, Vol. 60, N 2, p.170-174
https://doi.org/10.15407/10.15407/ujpe60.02.0170    Paper

Repetsky S.P.1, Tretiak O.V.2, Vyshivanaya I.G.2

1 Taras Shevchenko National University of Kyiv
(64, Volodymyrs’ka Str., Kyiv 01601, Ukraine; e-mail: srepetsky@univ.kiev.ua)
2 Taras Shevchenko National University of Kyiv, Institute of High Technologies
(4g, Academician Glushkov Ave., Kyiv 03127, Ukraine)

Electron Structure and Electric Conductivity of Graphene with a Nitrogen Impurity

Section: Nanosystems
Language: Ukrainian

Abstract: On the basis of the tight-binding model with the use of exchange-correlation potentials, the electron structure and the electric conductivity of graphene with a nitrogen impurity have been studied in the framework of density functional theory. The wave functions of 2s and 2p states of neutral noninteracting carbon atoms are selected as the basis ones. Band hybridization was found to result in the splitting of the electron energy spectrum near the Fermi level. In the nitrogen-doped graphene, owing to the overlapping of 2p energy bands, the mentioned gap is realized as a quasi-gap, in which the electron density of states has a much lower value in comparison with the other spectral region. It is found that an increase in the nitrogen concentration reduces the electric conductivity of graphene, although the density of states at the Fermi level grows at that. Hence, the reduction of the electric conductivity is associated with a sharper decrease in the relaxation time for electron states.

Key words: nitrogen-doped graphene, electron energy spectrum, tight-binding model, electric conductivity

References:

  1. Yu.V. Skrypnyk and V.M. Loktev, Phys. Rev. B 73, 241402 (2006). CrossRef
  2. Yu.V. Skrypnyk and V.M. Loktev, Phys. Rev. B 75, 245401 (2007). CrossRef
  3. C. Yelgel and G.P. Srivastava, Appl. Surf. Sci. 258, 8338 (2012). CrossRef
  4. D.A. Pablo, Chem. Phys. Lett. 492, 251 (2010). CrossRef
  5. D. Xiaohui, W. Yanqun, D. Jiayu, K. Dongdong, and Z. Dengyu, Phys. Lett. A 365, 3890 (2011).
  6. K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A.C. Seabaugh, H.G. Xing, J.S. Suehle, C.A. Richter, D.J. Gundlach, and N.V. Nguyen, Nano Lett., 13, 131 (2013). CrossRef
  7. S. Kim, I. Jo, D.C. Dillen, D.A. Ferrer, B. Fallahazad, Z. Yao, S.K. Banerjee, and E. Tutuc, Phys. Rev. Lett. 108, 116404 (2012). CrossRef
  8. S.P. Repetsky and T.D. Shatnyi, Teor. Mat. Fiz. 131, 456 (2002). CrossRef
  9. S.P. Repetsky and I.G. Vyshyvanaya, Metallofiz. Noveish. Tekhnol. 26, 887 (2004).
  10. S.P. Repetskii and I.G. Vyshyvanaya, Phys. Met. Metallogr. 99, 558 (2005).
  11. S.P. Repetsky and I.G. Vyshyvanaya, Metallofiz. Noveish. Tekhnol. 29, 587 (2007).
  12. S.P. Repetsky, I.G. Vyshyvanaya, V.V. Shastun, and A.F. Mel'nik, Metallofiz. Noveish. Tekhnol. 33, 425 (2011).
  13. S.P. Repetsky, O.V. Tretyak, I.G. Vyshyvanaya, and V.V. Shastun, Ukr. J. Phys. 13, 189 (2012).
  14. A.A. Abrikosov, L.P. Gor'kov, and I.E. Dzyaloshinskij, Methods of Quantum Field Theory in Statistical Physics (Prentice Hall, Englewood Cliffs, NJ, 1963).
  15. J. Sun, M. Marsman, G.I. Csonka, A. Ruzsinszky, P. Hao, Y. Kim, G. Kresse, and J.P. Perdew, Phys. Rev. B 84, 035117 (2011). CrossRef
  16. J.C. Slater and G.F. Koster, Phys. Rev. 94, 1498 (1954). CrossRef
  17. A.R. Ubbelohde and F.A. Lewis, Graphite and Its Crystal Compounds (Clarendon Press, London, 1960).