• Українська
  • English

< Previous issue | >

Ukr. J. Phys. 2015, Vol. 60, N 2, p.97-103
https://doi.org/10.15407/ujpe60.02.0097    Paper

Nakhodkin M.G., Fedorchenko M.I.

Taras Shevchenko National University of Kyiv
(64/13, Volodymyrs’ka Str., Kyiv 01601, Ukraine)

Interaction of Oxygen and Gadolinium with Si(100)-2x1 Surface. Formation of a System with 1-eV Work Function

Section: Solid matter
Language: Ukrainian

Abstract: Changes in the electronic properties of the Si(100) surface, when a multilayer structure of oxidized Gd atoms is created on it, have been studied, by using the electron spectroscopy methods. It is shown that, after a number of adsorption cycles of Gd and oxygen atoms on the Si(100)-2×1 surface at room temperature and the annealing of the obtained structure at 600 °C, the work function decreases from 4.8 to less than 1 eV. The work function reduction at larger numbers of processing cycles is shown to be accompanied by the oxidation of Gd and Si atoms and a gradual decrease of the Si concentration in the near-surface region. The obtained results are explained by the formation of an O–Gd dipole layer on the surface.

Key words: adsorption, gadolinium, oxygen, Si(100)-2×1 surface, oxidation, work function, dipole layer.

References:

  1. H.D.B. Gottlob, A. Stefani, and M. Schmidt, J. Vac. Sci. Technol. B 27, 258 (2009). CrossRef
  2. J.L. McChesney, A. Kirakosian, R. Bennewitz, J.N. Crain, J.-L. Lin, and F.J. Himpsel, Nanotechn. 13, 545, (2002). CrossRef
  3. J.H.G. Owen, K. Miki, and D.R. Bowler, J. Mater. Sci. 41, 4568 (2006). CrossRef
  4. D. Lee, D.K. Lim, S.-S. Bae, S. Kim, R. Ragan, D.A. Ohlberg, Y. Chen, R. Stanley Williams, Appl. Phys. A 80, 1311 (2005). CrossRef
  5. E. Morris, J.W. Dikinson, M.L. Willis, and A.A. Baski, in Clusters and Nano-Assemblies. Physical and Biological Systems, edited by P. Jena, S.N. Khanna, and B. K. Rao (World Scientific, Singapore, 2003), p. 175.
  6. H. Zhang, Q. Zhang, G. Zhao, J. Tang, O. Zhou, and L.- C. Qin, Chem. Soc. Comm. 127, 13120 (2005). CrossRef
  7. K. Wandelt and C.R. Brundle, Surf. Sci. 157, 162 (1985). CrossRef
  8. G. Molnar, G. Peto, and E. Kotai, Vacuum 41, 1640 (1990). CrossRef
  9. W.A. Henle, M.G. Ramsey, and F.P. Netzer, Vacuum 41, 814 (1990). CrossRef
  10. W.A. Henle, M.G. Ramsey, F.P. Netzer, R. Cimino, W. Braun, and S. Witzel, Phys. Rev. B 42, 11073 (1990). CrossRef
  11. R. Hofmann and F.P. Netzer, Phys. Rev. B 43, 9720 (1991). CrossRef
  12. W.A. Henle, M.G. Ramsey, F.P. Netzer, R. Cimino, S. Witzel, and W. Braun, Surf. Sci. 243, 141 (1991). CrossRef
  13. F.P. Netzer, J. Phys.: Condens. Matter 7, 991 (1995). CrossRef
  14. R. Hofmann, W.A. Henle, H. Ofner, M.C. Ramsey, F.P. Netzer, W. Braun, and K. Horn, Phys. Rev. B 47, 10407 (1993). CrossRef
  15. L. Ming, L. Grill, M.G. Ramsey, F.P. Netzer, and J.A.D. Matthew, Surf. Sci. 375, 24 (1997). CrossRef
  16. M. Sancrotti, A. Iandelli, G.L. Olcese, and A. Palenzona, Phys. Rev. B 44, 3328 (1991). CrossRef
  17. A.M. Shikin, A.Yu. Grigoriev, G.V. Prudnikova, D.V. Vyalykh, S.L. Molodtsov, and V.K. Adamchuk, Fiz. Tverd. Tela 4, 942 (2000).
  18. J.C. Chen, G.H. Shen, and L.J. Chen, Appl. Surf. Sci. 142, 291 (1999). CrossRef
  19. K.B. Chung, Y.K. Choi, M.H. Jang, M. Noh, C.N. Whang, H.K. Jang, and E.J. Jung, J. Vac. Sci. Technol. B 23, 153 (2005). CrossRef
  20. G.L. Molnar, G. Peto, E. Zsoldos, N.Q. Khunh, and Z.E. Hovath, Thin Solid Films 317, 417 (1998). CrossRef
  21. B.C. Min, K. Motohashi, C. Lodder, and R. Jansen, Nature Mater. 5, 817 (2006). CrossRef
  22. S. Sugahara, IEE Proc. Circuit Devices Syst. 152, 355 (2005). CrossRef
  23. A.V. Zenkevich, Yu.U. Matveyev, Yu.Yu. Lebedinskii, R. Mantovan, M. Fanciulli et al., J. Appl. Phys. 111, 506 (2012). CrossRef
  24. M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 4, 261 (2012).
  25. M.G. Nakhodkin, and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 1, 373 (2014).
  26. M.G. Nakhodkin and M.I. Fedorchenko, Visn. Kyiv. Univ. Ser. Fiz. Mat. Nauky 3, 323 (2012).
  27. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Piach, and R.E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronic Industries, Eden Prairie, Minnesota, 1976).
  28. C.Y. Su, W.E. Spicer, and I. Lindau, J. Appl. Phys. 54, 1413 (1983). CrossRef
  29. G. Park, V. Choong, G. Gao, B.R. Hsieh, and C.W. Tang, Appl. Phys. Lett. 68, 2699 (1996). CrossRef