• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 12, p.1251-1262
https://doi.org/10.15407/ujpe60.12.1251    Paper

Grytsay V.I.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: vgrytsay@bitp.kiev.ua)

Self-Organization and Fractality in the Metabolic Process of Glycolysis

Section: Nonlinear processes
Original Author's Text: English

Abstract: Within a mathematical model, the metabolic process of glycolysis is studied. The general scheme of glycolysis is considered as a natural result of the biochemical evolution. By using the theory of dissipative structures, the conditions of self-organization of the given process are sought. The autocatalytic processes resulting in the conservation of cyclicity in the dynamics of the process are determined. The conditions of breaking of the synchronization of the process, increase in the multiplicity of a cyclicity, and appearance of chaotic modes are studied. The phase-parametric diagrams of a cascade of bifurcations, which characterize the transition to chaotic modes according to the Feigenbaum scenario and the intermittence, are constructed. The strange attractors formed as a result of the funnel effect are found. The complete spectra of Lyapunov indices and divergences for the obtained modes are calculated. The values of KS-entropy, horizons of predictability, and Lyapunov dimensions of strange attractors are determined. Some conclusions concerning the structural-functional connections in glycolysis and their influence on the stability of the metabolic process in a cell are presented.

Key words: glycolysis, metabolic process, self-organization, fractality, strange attractor, Feigenbaum scenario.

References:

  1. A.P. Rudenko, DAN SSSR 159, 1374 (1964).
  2. A.P. Rudenko, The Theory of Self-Development of Open Catalytic Systems (Moscow State Univ., Moscow, 1969) (in Russian).
  3. A.P. Rudenko, Zh. Fiz. Khim. 57, 1597, 2641 (1983); 61, 1457 (1987).
  4. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977).
  5. B. Hess and A. Boiteux, Annu. Rev. Biochem. 40, 237 (1971). https://doi.org/10.1146/annurev.bi.40.070171.001321
  6. J. Higgins, Proc. Nat. Acad. Sci. USA, 51, 989 (1964). https://doi.org/10.1073/pnas.51.6.989
  7. E.E. Selkov, Europ. J. Biochem. 4, 79 (1968). https://doi.org/10.1111/j.1432-1033.1968.tb00175.x
  8. A. Goldbeter and R. Lefever, Biophys J. 12, 1302 (1972). https://doi.org/10.1016/S0006-3495(72)86164-2
  9. L.N. Drozdov-Tikhomirov, G.I. Skurida, and A.A. Alexandrov, J. Biomol. Struct. Dyn. 16, 917 (1999). https://doi.org/10.1080/07391102.1999.10508302
  10. A. Godlbeter and R. Caplan, Annu. Rev. Biophys. Bioeng. 5, 449 (1976). https://doi.org/10.1146/annurev.bb.05.060176.002313
  11. A.D. Suprun, Yu.I. Prylutskyy, A.M. Shut, and M.S. Miroshnichenko, Ukr. J. Phys. 48, 704 (2003).
  12. Yu.I. Prylutskyy, А.М. Shut, M.S. Miroshnychenko, and A.D. Suprun, Int. J. Thermophys. 26, 827 (2005).
  13. A.D. Suprun, A.M. Shut, Yu.I. Prylutskyy, Ukr. J. Phys. 52, 997 (2007).
  14. Chaos in Chemical and Biochemical System, edit. by R. Field, L. Gy¨orgyi (World Scientific, Singapore, 1993).
  15. V.P. Gachok and Ya.M. Yakymiv, Dokl. Akad. Nauk SSSR 300, 1095 (1988).
  16. V.P. Gachok, Kinetics of Biochemical Processes (Naukova Dumka, Kiev, 1988) (in Russian).
  17. V.P. Gachok, Strange Attractors in Biosystems (Naukova Dumka, Kiev, 1989) (in Russian).
  18. V.S. Anishchenko, Complex Oscillations in Simple Systems (Nauka, Moscow, 1990) (in Russian).
  19. S.P. Kuznetsov, Dynamical Chaos (Fiz.-Mat. Nauka, Moscow, 2001) (in Russian).
  20. V.P. Gachok and V.I. Grytsay, Dokl. Akad. Nauk SSSR 282, 51 (1985).
  21. V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin 33, 661 (1989). https://doi.org/10.1002/bit.260330602
  22. V.P. Gachok, V.I. Grytsay, A.Yu. Arinbasarova, A.G. Medentsev, K.A. Koshcheyenko, and V.K. Akimenko, Biotechn. Bioengin 33, 668 (1989). https://doi.org/10.1002/bit.260330603
  23. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 2, 175 (2000).
  24. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 3, 201 (2000).
  25. V.I. Grytsay, Dopov. Nats. Akad. Nauk Ukr., No. 11, 112 (2000).
  26. V.I. Grytsay, Ukr. J. Phys. 46, 124 (2001).
  27. V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 2, 57 (2005).
  28. V.V. Andreev and V.I. Grytsay, Matem. Modelir. 17, No. 6, 3 (2005).
  29. V.I. Grytsay and V.V. Andreev, Matem. Modelir. 18, No. 12, 88 (2006).
  30. V.I. Grytsay, Medium Romanian J. Biophys. 17, No. 1, 55 (2007).
  31. V.I. Grytsay, Biofiz. Visn., No. 2, 92 (2007).
  32. V.I. Grytsay, Biofiz. Visn., No. 2, 25 (2008).
  33. V.I. Grytsay, Ukr. J. Phys. 55, 599 (2010).
  34. V.I. Grytsay and I.V. Musatenko, Ukr. Biochem. J. 85, No. 2, 93 (2013). https://doi.org/10.15407/ubj85.02.093
  35. V.I. Grytsay and I.V. Musatenko, Ukr. J. Phys. 58, 677 (2013). https://doi.org/10.15407/ujpe58.07.0677
  36. V.I. Grytsay and I.V. Musatenko, Chaotic Modeling and Simulation (CMSIM) No. 4, 539 (2013).
  37. V.I. Grytsay and I.V. Musatenko, Ukr. Biokhim. Zh. 85, No. 5, 191 (2013).
  38. V.I. Grytsay and I.V. Musatenko, Biopol. and Cell 30, 404 (2014). https://doi.org/10.7124/bc.0008B9
  39. V.I. Grytsay and I.V. Musatenko, Chaotic Modeling and Simulation (CMSIM) 3, 207 (2014).
  40. V. Grytsay, Ukr. J. Phys. 60, 564 (2015).
  41. M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978). https://doi.org/10.1007/BF01020332
  42. A.N. Kolmogorov, DAN SSSR 154, 754 (1959).
  43. Ya.B. Pesin, Usp. Mat. Nauk. 32, No. 4, 55 (1977).
  44. J.L. Kaplan and J.A. Yorke, Ann. N. Y. Acad. Sci. 316, 400 (1979). https://doi.org/10.1111/j.1749-6632.1979.tb29484.x
  45. J.L. Kaplan and J.A. Yorke, in: Functional Differential Equations of Fixed Points, eds. H.O. Peitgen, H.O. Walther (Springer, Berlin, 1979), p. 204. https://doi.org/10.1007/BFb0064319