• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 12, p.1234-1242
https://doi.org/10.15407/ujpe60.12.1234    Paper

Ostafijchuk B.K.1, Bushkova V.S.1, Moklyak V.V.2, Ilnitsky R.V.1

1 Vasyl Stefanyk Precarpathian National University
(57, Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; e-mail: bushkovavira@gmail.com)
2 G.V. Kurdyumov Institute of Metal Physics of the NAS of Ukraine
(36, Academician Vernads’kyi Blvd., Kyiv 03680, Ukraine)

Synthesis and Magnetic Microstructure of Nanoparticles of Zinc-Substituted Magnesium Ferrites

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Nano-sized magnesium-zinc powders are synthesized, by using the sol-gel autocombustion technology. On the basis of X-ray researches, the phase composition of non-magnetic sub-stituted ferrite systems is determined. The resulting complex oxide powders are found to be agglomerated. The agglomerates consist of several nanoparticles with an average size of 18– 32 nm. According to the cation distribution in magnesium-zinc ferrites, Zn2+ cations are found to occupy positions in the tetrahedral sublattice (A-sites) and displace Fe3+ cations into the octahedral sublattice (B-sites). The Mössbauer spectrum registered for the magnesium ferrite powder at room temperature shows two characteristic Zeeman sextets. For ferrites substituted with non-magnetic cations, the Mössbauer spectra are superpositions of several sextets and superposing doublets. The studies also show that the shape of Zeeman spectral lines depends on the particle size, which testifies to their superparamagnetic properties. The dependence of Mössbauer parameters such as the isomer shift, the quadrupole splitting, and the hyperfine magnetic field on the Zn2+ ion concentration is discussed. It is supposed that a change of the effective magnetic field with increasing the zinc content in magnesium-zinc ferrites is related to the fact that the substitution of Fe3+ cations by Zn2+ ones reduces the indirect exchange interaction between the A and B sublattices in ferrites with the spinel structure, which actually leads to their magnetic ordering.

Key words:ferrite, nanoparticles, cation distribution, M¨ossbauer spectroscopy, superpara-magnetism.


  1. S.E. Shirsath, B.G. Toksha, and K.M. Jadhav, Mater. Chem. Phys. 117, 163 (2009). https://doi.org/10.1016/j.matchemphys.2009.05.027
  2. M.H. Alimuddin, S. Kumar, S.E. Shirsath et al., Ceram. Int. 39, 1807 (2013). https://doi.org/10.1016/j.ceramint.2012.08.028
  3. J. Chand, S. Verma, and M. Singh, J. Alloys Comp. 552, 264 (2013).
  4. H. Lee, J.G. Lee, K.S. Baek et al., J. Magn. 8, 138 (2003). https://doi.org/10.4283/JMAG.2003.8.4.138
  5. A.V. Kopaev and V.S. Bushkova, Acta Phys. Pol. A 117, 25 (2010).
  6. Z. Pedzich, M.M. Bucko, M. Krolikowski et al., J. Eur. Ceram. Soc. 24, 1053 (2004). https://doi.org/10.1016/S0955-2219(03)00386-8
  7. M.M. Haque,M. Huq, and M.A. Hakim, Physica B 404, 3915 (2009). https://doi.org/10.1016/j.physb.2009.07.124
  8. A. Xia, S. Liu, C. Jin et al., Mater. Lett. 105, 199 (2013). https://doi.org/10.1016/j.matlet.2013.04.002
  9. S. Rahman, K. Nadeem, M. Anis-Ur-Rehman et al., Ceram. Int. 39, 5235 (2013). https://doi.org/10.1016/j.ceramint.2012.12.023
  10. A.V. Kopayev, B.K. Ostafiychuk, I.Y. Vylkaet et al., Mat.- Wiss. Werkstofftech. 40, 255 (2009). https://doi.org/10.1002/mawe.200900436
  11. S. Sakka, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications (Kluwer Academic Publ., New York, 2004).
  12. Ch. Upadhyay and H.C. Verma, J. Appl. Phys. 95, 5746 (2004). https://doi.org/10.1063/1.1699501
  13. V.A. Bokov, Physics of Magnets (Nevskii Dialekt, St.- Petersburg, 2002) (in Russian).
  14. B.K. Ostafijchuk, V.S. Bushkova, A.V. Kopaev, and I.P. Yaremii, Fiz. Khim. Tverd. Tila 14, 508 (2013).
  15. B.K. Ostafijchuk, I.M. Gasyuk, and O.V. Kopaev, Fiz. Khim. Tverd. Tila 2, 387 (2001).
  16. Y. Ahn and E.J. Choi, J. Korean Phys. Soc. 41, 123 (2002).
  17. Sh.Sh. Bashkirov, N.G. Ivojlov, E.S. Romanov et al., Fiz. Tverd. Tela 24, 2641 (1982).
  18. M.A. Gilleo, in Ferromagnetic Materials, edited by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), Vol. 2, Chap. 1.
  19. B.K. Nath, P.K. Chakrabarty, S. Das et al., J. Surf. Sci. Technol. 21, 169 (2005).
  20. V. Sepelak, D. Baabe, F.J. Litterst, and K.D. Becker, J. Appl. Phys. 88, 5884 (2000). https://doi.org/10.1063/1.1316048
  21. S.V. Vonsovsky, Magnetism (Wiley, New York, 1974).
  22. B.K. Nath, P.K. Chakrabarty, S. Das et al., Eur. Phys. J. B 39, 417 (2004). https://doi.org/10.1140/epjb/e2004-00212-0
  23. G.M. Bancroft, Mossbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists (McGraw-Hill, London, 1973).
  24. H.H. Joshi and R.G. Kulkarni, J. Mater. Sci. 21, 2138 (1986). https://doi.org/10.1007/BF00547960
  25. V.S. Bushkova, Visn. Prykarpatsk. Nats. Univ. Ser. Khim. 7, 4 (2013).
  26. S. Morup, J.A. Dumesic, and H. Topsoe, Application of M¨ossbauer Spectroscopy (Academic Press, New York, 1989).