• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 12, p.1224-1233
https://doi.org/10.15407/ujpe60.12.1224    Paper

Romanyuk Yu.A., Yaremko A.M., Dzhagan V.M., Yukhymchuk V.O.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: romanyuk_yu@ukr.net)

Raman Scattering in Superlattices with Ge Quantum Dots

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The studies of the Raman scattering in superlattices with layers of Ge quantum dots (QDs) are carried out. A theoretical model describing the experimental spectra with regard for the real crystal structures of both the QD and the surrounding matrix, as well as the phonon-phonon interaction in the matrix and in the QDs, is proposed. The intensities of Raman spectra are calculated with the use of the secondary quantization procedure and Green’s functions. The results obtained show that the crystal structure of the superlattice composed of alternating silicon layers and layers with Ge quantum dots can be described as a mixed crystal consisting of a matrix with a certain distribution of “impurities” (“Ge-molecules”). A qualitative correlation between the theoretically calculated and experimentally measured positions and intensities of bands in the Raman spectra of QD superlattices is demonstrated, and the doublet character of the bands is explained.

Key words: quantum dot, superlattice, Raman scattering, Green’s function, phonons.

References:

  1. K.L. Wang, D. Cha, J. Liu, and C. Chen, Proc. IEEE 95, 1866 (2007). https://doi.org/10.1109/JPROC.2007.900971
  2. D.H. Feng, Z.Z. Xu, T.Q. Jia, X.X. Li, and S.Q. Gong, Phys. Rev. B 68, 035334 (2003). https://doi.org/10.1103/PhysRevB.68.035334
  3. E. Finkman, N. Shuall, A. Vardi, V. Le Thanh, and S.E. Schacham, J. Appl. Phys. 103, 093114 (2008). https://doi.org/10.1063/1.2919151
  4. A.S. Barker, jr., J.L. Merz, and A.C. Gossard, Phys. Rev. B 17, 3181 (1978). https://doi.org/10.1103/PhysRevB.17.3181
  5. Sung-kit Yip and Yia-Chung Chang, Phys. Rev. B 30, 7037 (1984). https://doi.org/10.1103/PhysRevB.30.7037
  6. C. Colvard, R. Merlin, M.V. Klein, and A.C. Gossard, Phys. Rev. Lett. 45, 298 (1980). https://doi.org/10.1103/PhysRevLett.45.298
  7. B. Djafari-Rouhani, L. Dobrzynski, O.H Duparc, R.E. Camely, and A.A. Maradudin, Phys. Rev. B 28, 1711 (1983). https://doi.org/10.1103/PhysRevB.28.1711
  8. B. Jusserand, D. Paquet, F. Mollot, F. Alexandre, and G. Le Roux, Phys. Rev. B 35, 2808 (1987). https://doi.org/10.1103/PhysRevB.35.2808
  9. J. Zi, K. Zhang, and X. Xie, Progr. Surf. Sci. 54, 69 (1997). https://doi.org/10.1016/S0079-6816(97)00002-6
  10. S.M. Rytov, Akust. Zh. 2, 71 (1956).
  11. P.A. Knipp and T.L. Reinecke, Phys. Rev. B 46, 10 310 (1992).
  12. A.K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985). https://doi.org/10.1103/PhysRevLett.54.2111
  13. V.I. Belitsky, T. Ruf, J. Spitzer, and M. Cardona, Phys. Rev. B 49, 8263 (1994). https://doi.org/10.1103/PhysRevB.49.8263
  14. A.J. Shields, M. Cardona, and K. Eberl, Phys. Rev. Lett. 72, 412 (1994). https://doi.org/10.1103/PhysRevLett.72.412
  15. M. Grundmann, O. Steir, and D. Bimberg, Phys. Rev. B 52, 11969 (1995). https://doi.org/10.1103/PhysRevB.52.11969
  16. K. Yip and Y.-C. Chang, Phys. Rev. B 30, 7037 (1984). https://doi.org/10.1103/PhysRevB.30.7037
  17. M.C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 11123 (1990). https://doi.org/10.1103/PhysRevB.42.11123
  18. E. Duval, Phys. Rev. B 46, 5795 (1992). https://doi.org/10.1103/PhysRevB.46.5795
  19. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menendez-Proupin, and A.I. Ekimov, Phys. Rev. B 57, 4664 (1998). https://doi.org/10.1103/PhysRevB.57.4664
  20. M. Cazayous, J.R. Huntzinger, J. Groenen, A. Mlayah, S. Christiansen, H.P. Strunk, O.G. Schmidt, and K. Eberl, Phys. Rev. B 62, 7243 (2000). https://doi.org/10.1103/PhysRevB.62.7243
  21. M. Cazayous, J. Groenen, J.R. Huntzinger, A. Mlayah, and O.G. Schmidt, Phys. Rev. B 64, 033306 (2001). https://doi.org/10.1103/PhysRevB.64.033306
  22. H. Fu, V. Ozolins, and A. Zunger, Phys. Rev. B 59, 2881 (1999). https://doi.org/10.1103/PhysRevB.59.2881
  23. S.-F. Ren, Z.-Q. Gu, and D. Lu, Solid State Commun. 113, 273 (2000). https://doi.org/10.1016/S0038-1098(99)00473-1
  24. M.I. Vasilevskiy, Phys. Rev. B 66, 195326 (2002). https://doi.org/10.1103/PhysRevB.66.195326
  25. M. Cazayous, J. Groenen, A. Zwick, A. Mlayah, R. Carles, J.L. Bischoff, and D. Dentel, Phys. Rev. B 66, 195320 (2002). https://doi.org/10.1103/PhysRevB.66.195320
  26. A.G. Milekhin, A.I. Nikiforov, O.G. Pchelyakov, S. Schulze, and D.R.T. Zahn, Nanotechnology 13, 55 (2002). https://doi.org/10.1088/0957-4484/13/1/312
  27. P.D. Lacharmoise, A. Bernardi, A.R. Goni, M.I. Alonso, M. Garriga, N.D. Lanzillotti-Kimura, and A. Fainstein, Phys. Rev. B 76, 155311 (2007). https://doi.org/10.1103/PhysRevB.76.155311
  28. G. Zanelatto, Yu.A. Pusep, N.T. Moshegov, A.I. Toropov, P. Basmaji, and J.C. Galzerani, J. Appl. Phys. 86, 4387 (1999). https://doi.org/10.1063/1.371375
  29. J.R. Huttinger, A. Mlayah, V. Paillard, A.Wellner, N. Combe, and C. Bonafos, Phys. Rev. B 74, 115308 (2006). https://doi.org/10.1103/PhysRevB.74.115308
  30. V.O. Yukhymchuk, V.M. Dzhagan, A.M. Yaremko, and M.Ya. Valakh, Eur. Phys. J. B 74, 10 (2010). https://doi.org/10.1140/epjb/e2010-00082-9
  31. H.J. Benson and D.L. Mills, Phys. Rev. B 1, 4835 (1970). https://doi.org/10.1103/PhysRevB.1.4835
  32. A.M. Yaremko, V.V. Koroteev, V.O. Yukhymchuk, V.M. Dzhagan, H. Ratajczak, A.J. Barnes, and B. Silvi, Chem. Phys. 388, 57 (2011). https://doi.org/10.1016/j.chemphys.2011.07.023
  33. Z.F. Krasilnik, P.M. Lytvyn, D.N. Lobanov, N. Mestres, A.V. Novikov, J. Pascual, M.Ya. Valakh, and V.A. Yukhymchuk, Nanotechnology 13, 81 (2002). https://doi.org/10.1088/0957-4484/13/1/318
  34. M.Ya. Valakh, V.O. Yukhymchuk, V.M. Dzhagan, O.S. Lytvyn, A.G. Milekhin, A.I. Nikiforov, O.P. Pchelyakov, F. Alsina, and J. Pascual, Nanotechnology 16, 1464 (2005). https://doi.org/10.1088/0957-4484/16/9/007