• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 12, p.1218-1223
https://doi.org/10.15407/ujpe60.12.1218    Paper

Atamas N.A., Bulavin L.A., Vasyl’eva D.

Taras Shevchenko National University of Kyiv, Faculty of Physics
(2/1, Academician Glushkov Ave., Kyiv 03127, Ukraine)

Structure of Aqueous Monovalent Electrolyte Solutions

Section: Soft matter
Original Author's Text: Ukrainian

Abstract: The results of researches concerning the temperature influence on the formation of a local structure in infinitely dilute aqueous solutions of monovalent sodium electrolytes are reported. The analysis of experimental data shows that the dissolution of a salt leads to the formation of a local structure in water. The results obtained do not contradict, but significantly complement the results of other experimental studies of dielectric permittivity and those with the use of neutron and infrared spectroscopies.

Key words: molecular dynamics, intermolecular interaction energy, local structure, hydrogen bond.


  1. F. Mouˇcka, I. Nezbeda, and W.R. Smith, J. Chem. Phys. 139, 124505 (2013). https://doi.org/10.1063/1.4821153
  2. P. Auffinger, T.E. Cheatham, and A.C. Vaiana, J. Chem. Theor. Comp. 3, 1851 (2007). https://doi.org/10.1021/ct700143s
  3. C. Caleroa, J. Faraudoa, and M. Aguilella-Arzo, Mol. Sim. 37, 123 (2011). https://doi.org/10.1080/08927022.2010.525513
  4. J. Walter and S. Deublein, High Perf. Comp. Sci. Eng. 11, 185 (2012).
  5. S.V. Shevkunov, Rus. J. Electrochem. 49, 238 (2013). https://doi.org/10.1134/S1023193513030130
  6. B. Luan and A. Aksimentiev, Soft Matt. 6, 243 (2010). https://doi.org/10.1039/B917973A
  7. G.H. Zimmerman, M.S. Gruszkiewicz, and R.H. Wood, J. Phys. Chem. 99, 11612 (1995). https://doi.org/10.1021/j100029a045
  8. P.C. Ho and D.A. Palmer, J. Sol. Chem. 25, 711 (1996). https://doi.org/10.1007/BF00973780
  9. S.H. Lee, P.T. Cummings, J.M. Simonson et al., Chem. Phys. Lett. 293, 289 (1998). https://doi.org/10.1016/S0009-2614(98)00766-0
  10. O.Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, New York, 1965).
  11. K.D. Collins, G.W. Neilson, and J.E. Enderby, Biophys. Chem. 128, 95 (2007). https://doi.org/10.1016/j.bpc.2007.03.009
  12. L.A. Bulavin, I.V. Zhyganiuk, M.P. Malomuzh, and K.M. Pankratov, Ukr. J. Phys. 56, 893 (2011).
  13. M.P. Allen, Computer Simulation of Liquids (Clarendon Press, Oxford, 2001).
  14. S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, and S.H. Lee, J. Phys. Chem. B 102, 4193 (1998). https://doi.org/10.1021/jp980642x
  15. J.C. Rasaiah and R.M. Lynden-Bell, Phil. Trans. R. Soc. Lond. A 359, 1545 (2001). https://doi.org/10.1098/rsta.2001.0865
  16. T.R. Forester, The DL-POLY-2.0. Reference Manual and Version 2.0 edition (CCLRC, Daresbury Laboratory, Warrington, 1995).
  17. A. Arnold, C. Holm, in Advanced Computer Simulation Approaches for Soft Matter Sciences (Springer, Berlin, 2005), Vol. 2, p. 59. https://doi.org/10.1007/b136793
  18. B.Ya. Simkin and I. I. Sheikhet, Quantum Chemical and Statistical Theory of Solutions: A Computational Approach (Ellis Horwood, London, 1995).
  19. P.L. Chau and R. L. Mancera, Mol. Phys. 96, 109 (1999). https://doi.org/10.1080/00268979909482943
  20. I.I. Adamenko and L.A. Bulavin, Physics of Liquids and Liquid Systems (ASMI, Kyiv, 2006) (in Ukrainian).
  21. G.C. Pimentel and A.L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960).