• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 12, p.1196-1210
https://doi.org/10.15407/ujpe60.12.1196    Paper

Cherniak O.M.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03143, Ukraine; e-mail: anchernyak@bitp.kiev.ua)

Particle's Diffusion in a Two-Dimensional Random Velocity Field

Section: Plasmas and Gases
Original Author's Text: English/Ukrainian

Abstract: The two approaches to describe the diffusion process of test particles in a two-dimensional random velocity field are compared to each other: the method of decorrelation trajectories and the moment approximation. The frozen turbulence case is considered, because it is the most complicated test for statistical theories. The results of considered analytical approaches are verified by direct numerical simulation.

Key words: test-particle diffusion, random field, numerical simulation.


  1. R.H. Kraichnan, Phys. Fluids 13, 22 (1970).  https://doi.org/10.1063/1.1692799
  2. G.I. Taylor, Proc. London Math. Soc. 20, 196 (1921).
  3. S. Corrsin, in Atmospheric Diffusion and Air Pollution, edited by H.E. Landsberg and J. van Mieghem (Academic Press, New York, 1959), p. 441.
  4. J.B. Taylor and B. McNamara, Phys. Fluids 14, 1492 (1971).  https://doi.org/10.1063/1.1693635
  5. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics (Dover, New York, 2007, 2013), vols. 1-2.
  6. J.D. Reuss and J. H. Misguich, Phys. Rev. E 54, 1857 (1996).  https://doi.org/10.1103/PhysRevE.54.1857
  7. A.V. Gruzinov, M.B. Isichenko, and Ya.L. Kalda, Sov. Phys. JETP 70, 263 (1990).
  8. M. Vlad, F. Spineanu, J.H. Misguich, and R. Balescu, Phys. Rev. E 58, 7359 (1998).  https://doi.org/10.1103/PhysRevE.58.7359
  9. R. Balescu, Aspects of Anomalous Transport in Plasmas (IOP Publ., Bristol, 2005).  https://doi.org/10.1201/9781420034684
  10. V.I. Zasenko, A.G. Zagorodny, O.M. Chernyak, Ukr. J. Phys. 56, 1007 (2011); 53, 517 (2008).