• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1150-1154
https://doi.org/10.15407/ujpe60.11.1150    Paper

Pinchuk-Rugal T.M.1, Dmytrenko O.P.1, Kulish M.P.1, Bulavin L.A.1, Nychyporenko O.S.1, Grabovskyi Yu.E.1, Zabolotnyi M.A.2, Strelchuk V.V.2, Nikolenko A.S.2, Shlapatska V.V.3, Tkach V.M.4

1 Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)
2 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine)
3 L.V. Pysarzhevskyi Institute of Physical Chemistry, Nat. Acad. of Sci. of Ukraine
(31, Nauka Ave., Kyiv 03028, Ukraine)
4 V.N. Bakul Institute for Superhard Materials, Nat. Acad. of Sci. of Ukraine
(2, Avtozavodska Str., Kyiv 04074, Ukraine)

Radiation-Induced Damages in Multi-Walled Carbon Nanotubes at Electron Irradiation

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The morphology, X-ray diffraction patterns, and Raman scattering spectra of multi-walled carbon nanotubes (MWCNTs) synthesized by the methods of chemical vapor deposition and low-temperature catalytic conversion of carbon monoxide in the presence of hydrogen have been studied. Depending on the method of nanotube synthesis, a substantial difference of the correlation between their separate layers took place. In the case of MWCNT irradiation with high-energy electrons with the energy Ee = 1.8 MeV to various absorption doses, changes in the structure and the ratio of integral intensities of D- and G-bands in the Raman spectra were observed, which testifies to the enhancement of the interlayer correlation owing to the formation of sp3 -hybridized bonds between nanotube layers at radiation-induced damages

Key words: multiwalled carbon nanotubes, X-ray diffraction, Raman scattering, electron irradiation, radiation-induced damages, destruction.

References:

  1. A.V. Yeletskii, Usp. Fiz. Nauk 167, 945 (1997). https://doi.org/10.3367/UFNr.0167.199709b.0945
  2. A.V. Yeletskii, Usp. Fiz. Nauk 172, 401 (2002). https://doi.org/10.3367/UFNr.0172.200204b.0401
  3. A.V. Yeletskii, Usp. Fiz. Nauk 174, 1191 (2004). https://doi.org/10.3367/UFNr.0174.200411c.1191
  4. A.V. Yeletskii, Usp. Fiz. Nauk 179, 225 (2009). https://doi.org/10.3367/UFNr.0179.200903a.0225
  5. A.V. Yeletskii, Usp. Fiz. Nauk 180, 897 (2010). https://doi.org/10.3367/UFNr.0180.201009a.0897
  6. E.G. Rakov, Zh. Neorg. Khim. 44, 1827 (1999).
  7. E.G. Rakov, Usp. Khim. 69, 41 (2000). https://doi.org/10.1070/RC2000v069n01ABEH000531
  8. E.G. Rakov, Usp. Khim. 70, 934 (2001). https://doi.org/10.1070/RC2001v070n10ABEH000660
  9. A.I. Vorobyova, Usp. Fiz. Nauk 180, 265 (2010). https://doi.org/10.3367/UFNr.0180.201003d.0265
  10. B.E. Kibride and J.N. Coleman, J. Appl. Phys. 92, 4024 (2002). https://doi.org/10.1063/1.1506397
  11. P.J. Harris, Int. Mater. Rev. 49, 31 (2004). https://doi.org/10.1179/095066004225010505
  12. M. Baibaras and P. Gomes-Romero, J. Nanosci. Nanotechn. 6, 14 (2006).
  13. S.-Y. Fu, Z.-K. Chen, S. Hong, and C.C. Han, Carbon 47, 3192 (2009). https://doi.org/10.1016/j.carbon.2009.07.028
  14. D. Reznik and C.H. Neumann, Phys. Rev. B 52, 116 (1995). https://doi.org/10.1103/PhysRevB.52.116
  15. F. Benueu, C. l'Huillier, and J.-P. Salvetat, Phys. Rev. B 59, 5945 (1999). https://doi.org/10.1103/PhysRevB.59.5945