• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1143-1149
https://doi.org/10.15407/ujpe60.11.1143    Paper

Bolesta I.M.1, Rovetskii I.N.1, Yaremko Z.M.2, Karbovnyk I.D.1, Velgosh S.R.1, Partyka M.V.3, Gloskovskaya N.V.4, Lesivtsiv V.M.1

1 Ivan Franko National University of Lviv, Faculty of Electronics,
Chair of Radiophysics and Computer Technologies
(107, Gen. Tarnavs’kyi Str., Lviv 79017, Ukraine; e-mail: bolesta@electronics.lnu.edu.ua)
2 Ivan Franko National University of Lviv, Department of Life Safety
(41, Doroshenko Str., Lviv 79000, Ukraine)
3 Ivan Franko National University of Lviv, Faculty of Physics, Chair of Solid State Physics
(50, Dragomnov Str., Lviv 79005, Ukraine)
4 Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14-b, Metrolohichna Str., Kyiv, 03680, Ukraine)

On the Mechanism of Nanostructure Growth on the Surface of CdI2 Crystals

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Atomic force microscopy studies of the dynamics of the nanostructure formation on a van der Waals surface of CdI2 crystals during aging in air environment under near-equilibrium thermodynamic conditions have been carried out. The nanostructure growth process is found to consist of three stages. At the first stage, there appear nano-sized pores due to the lattice dissolution at the outcrops of screw dislocations or other structural defects. At the second stage, the cone-shaped nanoclusters arise and grow in those nano-sized pores. At the third stage, the nanoclusters coagulate. The growth kinetics of cone-shaped nanoclusters is described by a diffusion model based on the interdiffusion approximation for the components. The growth rate of nanoclusters is shown to depend on the time evolution of the concentration gradient of Cd2+ ions in the near-reaction zone

Key words: atomic force microscopy, van der Waals surface, nanopores, nanoclusters, diffusion.

References:

  1. K. Ueno, K. Sasaki, K. Saiki et al., Jpn. J. Appl. Phys. 38, 511 (1999). https://doi.org/10.1143/JJAP.38.511
  2. S.I. Drapak, A.P. Bakhtinov, S.V. Gavrilyuk et al., Fiz. Tverd. Tela 48, 1515 (2006).
  3. O. Lang, R. Schlaf, Y. Tomm et al., J. Appl. Phys. 75, 7805 (1994). https://doi.org/10.1063/1.356562
  4. A.I. Dmitriev, Zh. Tekhn. Fiz. 82, 114 (2012).
  5. A.I. Dmitriev, V.V. Vishnyak, G.V. Lashkarev et al., Fiz. Tverd. Tela 53, 579 (2011).
  6. A.P. Bakhtinov, Z.R. Kudrinskii, and O.S. Litvin, Fiz. Tverd. Tela 53, 2045 (2011).
  7. O.A. Balitskii, Mater. Lett. 60, 594 (2006). https://doi.org/10.1016/j.matlet.2005.09.037
  8. O.A. Balitskii, J. Electr. Microsc. 55, 261 (2006). https://doi.org/10.1093/jmicro/dfl031
  9. R. Singh, S. Samanta, A. Narlikar et al., J. Cryst. Growth 204, 233 (1999). https://doi.org/10.1016/S0022-0248(99)00185-2
  10. R. Singh, S. Samanta, A. Narlikar et al., Bull. Mater. Sci. 23, 131 (2000). https://doi.org/10.1007/BF02706554
  11. B. Kumar and N. Sinha, Cryst. Res. Technol. 40, 887 (2005). https://doi.org/10.1002/crat.200410451
  12. R. Singh, S. Samanta, A. Narlikar et al., Surf. Sci. 422, 188 (1999). https://doi.org/10.1016/S0039-6028(98)00877-2
  13. N.-Y. Cui, N.M.D. Brown, and A. McKinley, Appl. Surf. Sci. 152, 266 (1999). https://doi.org/10.1016/S0169-4332(99)00325-6
  14. N. Sallacan, R. Popovitz-Biro, and R. Tenne, Solid State Sci. 5, 905 (2003). https://doi.org/10.1016/S1293-2558(03)00110-9
  15. I.M. Bolesta, R.I. Gritskiv, Yu.R. Datsyuk et al., Ukr. Fiz. Zh. 48, 1 (2003).
  16. I.M. Bolesta, I.N. Rovetskyj, I.D. Karbovnyk et al., Techn. Phys. Lett. 39, 463 (2013). https://doi.org/10.1134/S1063785013050180
  17. Q.-J. Liu, Z.-T. Liu, and L.-P. Feng, Phys. Status Solidi B 248, 1629 (2011). https://doi.org/10.1002/pssb.201046481
  18. Wide-Gap Layered Crystals and Their Physical Properties, edited by A.B. Lyskovich (Vyshcha Shkola, Lviv, 1982) (in Russian).
  19. A.L. Efros, Physics and Geometry of Disorder: Percolation Theory (Mir Publishers, Moscow, 1986).