• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1132-1142
https://doi.org/10.15407/ujpe60.11.1132    Paper

Goriachko A., Melnik P.V., Nakhodkin M.G

Department of Physical Electronics, Taras Shevchenko National University of Kyiv
(4G, Academician Glushkov Ave., Kyiv 03022, Ukraine; e-mail: andreandy2000@gmail.com)

New Features of the Ge(111) Surface with Co-existing с(2x8) and 2x2 Reconstructions Investigated by Scanning Tunneling Microscopy

Section: Nanosystems
Original Author's Text: English

Abstract: The c(2 X 8) ground state reconstruction of the Ge(111) surface can be easily disrupted by the 2?2 reconstruction, since both of them are rather close to each other in terms of the surface free energy. Both structures are comprehensively studied in the literature. However, new surface features can be found on the borders between c(2X8) and 2X2 domains of various registries and orientations. We report scanning tunneling microscopy observations and suggest atomic models for the linear chains of 2X2 cells or c(2X4) cells, as well as adatom/restatom group vacancies, including corner holes of a similar geometry, like the case of the Si(111)-7 X 7 surface.

Key words: germanium, surface, reconstruction, scanning tunneling microscopy.


  1. C.B. Duke, Chem. Rev. 96, 1237 (1996). https://doi.org/10.1021/cr950212s
  2. G. Binnig, H. Rohrer, Ch. Gerber et al., Phys. Rev. Lett. 50, 120 (1983). https://doi.org/10.1103/PhysRevLett.50.120
  3. K. Takayanagi and Y. Tanishiro, Phys. Rev. B 34, 1034 (1986). https://doi.org/10.1103/PhysRevB.34.1034
  4. R.S. Becker, B.S. Swartzentruber, J.S. Vickers et al., Phys. Rev. B 39, 1633 (1989). https://doi.org/10.1103/PhysRevB.39.1633
  5. E.S. Hirschorn, D.S. Lin, F.M. Leibsle et al., Phys. Rev. B 44, 1403 (1991). https://doi.org/10.1103/PhysRevB.44.1403
  6. R.M. Feenstra, G. Meyer, F. Moresco et al., Phys. Rev. B 64, 081306R (2001). https://doi.org/10.1103/PhysRevB.64.081306
  7. W.S. Verwoerd, V. Nolting, P. Badziag, Surf. Sci. 241, 135 (1991). https://doi.org/10.1016/0039-6028(91)90218-H
  8. G. Lee, H. Mai, I. Chizhov et al., J. of Vac. Sci. and Techn. A 16, 1006 (1998). https://doi.org/10.1116/1.581222
  9. G. Lee, H. Mai, I. Chizhov et al., Surf. Sci. 463 55 (2000). https://doi.org/10.1016/S0039-6028(00)00596-3
  10. I.V. Lyubinetsky, P.V. Melnik, N.G. Nakhodkin et al., Vacuum 46, 219 (1995). https://doi.org/10.1016/0042-207X(94)00047-6
  11. I. Razado-Colambo, J. He, H. Zhang et al., Phys. Rev. B 79, 205410 (2009). https://doi.org/10.1103/PhysRevB.79.205410
  12. P. Molinas-Mata, J. Zegenhagen, Solid State Comm. 84, 393 (1992). https://doi.org/10.1016/0038-1098(92)90484-Q
  13. D.J. Chadi, and C. Chiang, Phys. Rev. B 23, 1843 (1981). https://doi.org/10.1103/PhysRevB.23.1843
  14. D. Drakova and G. Doyen, Progr. Surf. Sci. 46 251 (1994). https://doi.org/10.1016/0079-6816(94)90085-X
  15. T.M. Jung, R.J. Phaneuf, and E.D. Williams, Surf. Sci. 254 235 (1991). https://doi.org/10.1016/0039-6028(91)90656-D
  16. N. Takeuchi, A. Selloni, and E. Tosatti, Phys. Rev. Lett. 69 648 (1992). https://doi.org/10.1103/PhysRevLett.69.648
  17. R. Feidenhans'l, J.S. Pedersen, J. Bohr et al., Phys. Rev. B 38, 9715 (1988). https://doi.org/10.1103/PhysRevB.38.9715
  18. A.J. Mayne, F. Rose, C. Bolis et al., Surf. Sci. 486, 226 (2001). https://doi.org/10.1016/S0039-6028(01)01057-3
  19. S.Yu. Bulavenko, P.V. Melnik, M.G. Nakhodkin et al., Surf. Sci. 600, 1185 (2006). https://doi.org/10.1016/j.susc.2006.01.021
  20. A. Goriachko, P.V. Melnik, A. Shchyrba et al., Surf. Sci. 605, 1771 (2011). https://doi.org/10.1016/j.susc.2011.06.004
  21. A. Goriachko, A. Shchyrba, P.V. Melnik et al., Ukr. J. Phys. 59 805 (2014). https://doi.org/10.15407/ujpe59.08.0805
  22. U. K¨ohler, O. Jusko, G. Pietsch et al., Surf. Sci. 248 321 (1991). https://doi.org/10.1016/0039-6028(91)91178-Z
  23. B.S. Swartzentruber, Phys. Rev. Lett. 76 459 (1996). https://doi.org/10.1103/PhysRevLett.76.459