• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1108-1114
https://doi.org/10.15407/ujpe60.11.1108    Paper

Bulavin L.A.1, Gotsulskiy V.Ya.1, Malomuzh N.P.2, Stiranets M.V.2

1 Taras Shevchenko National University of Kyiv, Faculty of Physics
(4, Academician Glushkov Ave., Kyiv 03127, Ukraine; e-mail: vygot@onu.edu.ua)
2 I.I. Mechnikov National University of Odessa, Faculty of Physics
(42, Pasteur Str., Odesa 65026, Ukraine)

Refractometry of Water–Ethanol Solutions near Their Contraction Point

Section: Soft matter
Original Author's Text: Ukrainian

Abstract: The concentration dependences of the refractive index in aqueous ethanol solutions at equilibrium have been studied experimentally. Special attention was paid to their behavior in a vicinity of the peculiar point defined as the intersection point of the concentration dependences of the contraction measured at different temperatures or as a point, at which the intensity of molecular light scattering has a maximum. The refractive index is found to noticeably deviate from its reference values in a vicinity of the peculiar point, 0.05 < x < 0.1 (x is the mole fraction of ethanol). This effect reflects the fact that the equilibrium properties of the solutions concerned are established only during a few weeks. Arguments that the system becomes microinhomogeneous in this concentration interval are presented

Key words: water-alcohol solutions, refractive index, microinhomogeneous structure.

References:

  1. V.Ya. Gotsulskiy, N.P. Malomuzh, and V.E. Chechko, Zh. Fiz. Khim. 87, 1660 (2013).
  2. V.E. Chechko, V.Ya. Gotsulskiy, and M.P. Malomuzh, Condens. Matter Phys. 16, 1 (2013). https://doi.org/10.5488/CMP.16.23006
  3. V.Ya. Gotsulskiy, N.P. Malomuzh, M.V. Timofeev, and V.E. Chechko, Zh. Fiz. Khim. 89, 50 (2015).
  4. V.Ya. Gotsulskiy, N.P. Malomuzh, and V.E. Chechko, Russ. J. Phys. Chem. A 89, 207 (2015). https://doi.org/10.1134/S0036024415020119
  5. M.F. Vuks, Light Scattering in Gases, Liquids, and Solutions (Leningrad State Univ. Publ. House, Leningrad, 1977) (in Russian).
  6. M.F. Vuks and L.V. Shurupova, Opt. Commun. 5, 277 (1972). https://doi.org/10.1016/0030-4018(72)90096-X
  7. G.W. Beer and D.J. Jolly, Opt. Commun. 11, 150 (1974). https://doi.org/10.1016/0030-4018(74)90205-3
  8. D. Subramanian and M.A. Anisimov, J. Phys. Chem. B 115, 9179 (2011). https://doi.org/10.1021/jp2041795
  9. D. Subramanian, J.B. Klauda, J. Leys, and M.A. Anisimov, Vestn. S. Peterb. Gos. Univ. Ser. Fiz. Khim. N 1, 139 (2013).
  10. V.E. Chechko, V.Ya. Gotsulskiy, and V.G. Zaremba, J. Mol. Liq. 105, 211 (2003). https://doi.org/10.1016/S0167-7322(03)00055-2
  11. V.M. Byakov, L.V. Lanshina, O.P. Stepanova, and S.V. Stepanov, Russ. J. Phys. Chem. A 83, 214 (2009). https://doi.org/10.1134/S0036024409020125
  12. A.A. Atamas, N.A. Atamas, and L.A. Bulavin, Ukr. J. Phys. 48, 1068 (2003).
  13. Tables for Determination of Ethanol Content in Water–Alcohol Solutions, edited by S.F. Provorovskaya (Izd. Standartov, Moscow, 1972) (in Russian).
  14. Chemist's Handbook, Vol. 3: Chemical Equilibrium and Kinetics. Solution Properties. Electrode Processes, edited by B.P. Nikolskii (Khimiya, Leningrad, 1965) (In Russian).
  15. V.F. Barkovskii, S.M. Gorelik, and T.B. Gorodentsova, Physicochemical Methods of Analysis (Vysshaya Shkola, Moscow, 1972) (in Russian).
  16. V.N. Stabnikov, I.M. Roiter, and T.B. Protsyuk, Ethyl Alcohol (Pishchevaya Promyshlennost, Moscow, 1976) (in Russian).
  17. L.A. Bulavin. V.Ya. Gotsulskiy, and V.E. Chechko, Ukr. J. Phys. 59, 689 (2014).
  18. V.L. Kulinskii and N.P. Malomuzh, Phys. Rev. E 65, 1506 (2002). https://doi.org/10.1103/PhysRevE.65.061506
  19. T.V. Lokotosh and N.P. Malomuzh, Zh. Fiz. Khim. 68, 984 (1994).
  20. J.C. Maxwell-Garnett, Phil. Trans. R. Soc. A 203, 385 (1904). CrossRef
  21. M.F. Vuks and L.V. Shurupova, Opt. Spektrosk. 40, 154 (1976).
  22. G.P. Roshchina, in Critical Phenomena and Fluctuations in Solutions (Academy of Sciences of the USSR, Moscow, 1960), p. 109 (in Russian).