• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1101-1107
https://doi.org/10.15407/ujpe60.11.1101    Paper

Kovtun Yu.V., Pinos I.B., Ozerov A.N., Skibenko A.I., Skibenko E.I., Yuferov V.B.

National Science Center “Kharkiv Institute of Physics and Technology”
(1, Akademichna Str., Kharkiv 61108, Ukraine; e-mail: Ykovtun@kipt.kharkov.ua)

Microwave Device on the Basis of a Barrel Resonator for Determining the Average Density and the Density Profile in Plasma Formations

Section: Plasmas and Gases
Original Author's Text: Ukrainian

Abstract: A microwave resonator device for measuring the plasma density is described. A method is proposed for determining the radial distribution function of the plasma density by measuring a shift of resonance frequencies for two oscillation modes. According to experimental results, the device is suitable for measuring the plasma density in the range 109–1011 cm-3

Key words: microwave resonator, plasma, radial distribution function, resonance frequency, plasma density.

References:

  1. L.A. Dushin and A.I. Skibenko, Microwave Methods of Plasma Research, Preprint 211/r-065 (Institute of Physics and Technology, Kharkiv, 1966) (in Russian).
  2. L.A. Dushin and A.I. Skibenko, Microwave Interferometry of Plasma, Preprint 212/r-066 (Institute of Physics and Technology, Kharkiv, 1966) (in Russian).
  3. A.I. Skibenko, Research of Some Methods for Microwave Plasma Diagnostics, Ph. D. thesis (Kharkiv State University, Kharkiv, 1966) (in Russian).
  4. V.E. Golant, Superhigh-Frequency Methods of Plasma Research (Nauka, Moscow, 1968) (in Russian).
  5. C. Laviron, A.J. Donne, M.E. Manso, and J. Sanchez, Plasma Phys. Control. Fusion 38, 905 (1996). https://doi.org/10.1088/0741-3335/38/7/002
  6. H. Park, C.C. Chang, B.H. Deng et al., Rev. Sci. Instr. 74, 4239 (2003). https://doi.org/10.1063/1.1610781
  7. G.D. Conway, Nucl. Fusion 46, s665 (2006). https://doi.org/10.1088/0029-5515/46/9/S01
  8. L.A. Weinstein, Open Resonators and Open Waveguides (Golem Press, Boulder, CO, 1969).
  9. I.N. Moskalev and A.M. Stefanovskii, Zh. Tekhn. Fiz. 42, 2311 (1972).
  10. C. Kent, D. Sinnot, and P. Kent, J. Appl. Phys. 42, 2847 (1971). https://doi.org/10.1063/1.1660637
  11. A.I. Skibenko and I.P. Fomin, Istochn. Nizkotemp. Plazmy 1, 112 (1975).
  12. Yu.N. Nezovibat'ko, A.I. Skibenko, V.A. Skubko, and I.P. Fomin, Vopr. At. Nauki Tekhn., N 2, 35 (1975).
  13. V.L. Berezhniy, V.S. Voitsenya, V.I. Ocheretenko et al., in Proceedings of the 3-rd International Symposium on Physics and Engineering of Millimeter and Submillimeter Waves (1998), Vol. 2, p. 700. CrossRef
  14. A.I. Skibenko, I.P. Fomin, I.B. Pinos et al., Plasma Dev. Operat 11, 229 (2003). https://doi.org/10.1080/10519990310001640920
  15. V.S. Voitsenya, A.I. Voloshko, L.A. Dushin et al., Zh. Tekhn. Fiz. 42, 1848 (1972).
  16. A.D. Komarov, O.A. Lavrentyev, V.A. Potapenko et al., Teplofiz. Vys. Temp. 19, 614 (1981).
  17. E.I. Skibenko, V.A. Suprunenko, and V.B. Yuferov, At. Energ. 49, 405 (1980).
  18. B.V. Glasov, V.I. Kurnosov, E.A. Lysenko et al., Fiz. Plazmy 11, 1431 (1985).