• Українська
  • English

< |  Next >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 11, p.1177-1181
https://doi.org/10.15407/ujpe60.11.1177    Paper

Singh K.P., Dewri M.

Department of Mathematical Sciences, Bodoland University, Kokrajhar, B.T.C, Assam, India (Debargaon, Rangalikhata, PIN-783370, India; e-mail: dewri11@gmail.com)

Some Spherically Symmetric R/W Universe Interacting with Vacuum B–D Scalar Field

Section: Astrophysics and Сosmology
Original Author's Text: Ukrainian

Abstract: We study a spherically symmetric vacuum cosmological model of the Universe interacting with the Brans–Dicke (B–D) scalar field in the Robertson–Walker (R/W) metric. Exact timedependent solutions of B–D vacuum field equations are obtained in two different cases. The physical and dynamical properties of the model are discussed in detail.

Key words: Brans–Dicke theory, vacuum cosmological model, spherically symmetric scalar field.

References:

  1. C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925
  2. B.K. Sahoo and L.P. Singh, Mod. Phys. Letter A 17, 2409 (2002). https://doi.org/10.1142/S0217732302008368
  3. A.R. El-Nabulsi, Mod. Phys. Letter A 23, 401 (2008). https://doi.org/10.1142/S0217732308026327
  4. H. Nariri, Prog. Theor. Phys. 47, 1824 (1972). https://doi.org/10.1143/PTP.47.1824
  5. A.I. Janis, D.C. Robinson, and J. Winicour, Phys. Rev. 186, 1729 (1969). https://doi.org/10.1103/PhysRev.186.1729
  6. R. Tabensky and A.H. Taub, Commun. Math. Phys. 29, 61 (1973). https://doi.org/10.1007/BF01661153
  7. J.R. Rao, R.N. Tiwari, and K.S. Bhamra, Annals of Physics 87, 480 (1974). https://doi.org/10.1016/0003-4916(74)90045-1
  8. R.N. Tiwari and B.K. Nayak, J. Phys. A: Math. Gen. 9, 369 (1976); doi:10.1088/0305-4470/9/3/007. https://doi.org/10.1088/0305-4470/9/3/007
  9. P.P. Rao, R.N. Tiwari, Acta Phys. Acad. Sci. Hung. 7, 281 (1979). https://doi.org/10.1007/BF03158226
  10. V.B. Johri, G.K. Goswami, and R.C. Srivastava, Prog. Theor. Phys. 69, 1 (1983). https://doi.org/10.1143/PTP.69.341
  11. S. Ram and D.K. Singh, Astrophys. Space Sci. 95, 219 (1983). https://doi.org/10.1007/BF00661177
  12. T. Singh and T. Singh, Astrophys. Space Sci. 100, 309 (1984). https://doi.org/10.1007/BF00651606
  13. N. Raizi and R. Askari, Mon. Not. R. Astron. Soc. 261, 229 (1993). https://doi.org/10.1093/mnras/261.1.229
  14. A. Bhadra and K. Sarkar, Gen. Relativ. Gravit. 37, 2189 (2005). https://doi.org/10.1007/s10714-005-0181-1
  15. K.S. Adhav, M.R. Ugale, C.B. Kale, and M.P. Bhende, Int. J. Theor. Phys. 48, 178 (2009). https://doi.org/10.1007/s10773-008-9793-z
  16. A. Baykal, D.K. Ciftci, and O. Delice, arXiv:0910.1342v3 (2010).
  17. P. Rai, L.N. Rai, and V.K. Singh, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 83, 55 (2013).
  18. S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).