• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 10, p.1042-1048
https://doi.org/10.15407/ujpe60.10.1042    Paper

Tomchuk P.M.1, Butenko D.V.2

1 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Nauky Ave., Kyiv 03680, Ukraine; e-mail: ptomchuk@iop.kiev.ua)
2 National University of Kyiv-Mohyla Academy
(2, G. Skovoroda Str., Kyiv 04070, Ukraine; e-mail: daniil.butenko@gmail.com)

Dependences of Dipole Plasmon Resonance Damping Constants on the Shape of Metallic Nanoparticles

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: A theory describing the dependence of the damping constants of dipole plasmon resonances on the shape of metallic nanoparticles has been developed. Analytical expressions for the damping constants as functions of the ratio between the curvature radii are derived in the case of spheroidal particles and provided the dominating role of electron scattering at the surface. The corresponding plots are drawn. A considerable dependence of the damping constants on the nanoparticle shape is illustrated. It is shown that the incorporation of metallic nanoparticles of a certain shape into a dielectric matrix with a high dielectric permeability can lead to a resonance caused by the coincidence of the plasmon resonance frequency with the frequency of individual electron oscillations (between the potential walls). This resonance is responsible for the appearance of a quasi-oscillating dependence of the plasmon resonance damping constants on the nanoparticle size.

Key words: damping constants, plasmon resonances, metallic nanoparticles.


  1. R.D. Fedorovich, A.G. Naumovets, and P.M. Tomchuk, Phys. Rep. 328, 73 (2000).
  2. G.V. Hartland, Chem. Rev 111, 3858 (2011).
  3. V.V. Klimov, Nanoplasmonics (Nauka, Moscow, 2012) (in Russian).
  4. E.F. Venger, A.V. Goncharenko, and M.L. Dmitruk, Optics of Small Particles and Disperse Media (Naukova Dumka, Kyiv, 1999) (in Ukrainian).
  5. N.G. Khlebtsov, Kvant. Elektron. 38, 6 (2008). CrossRef
  6. E.D. Belotskii and P.M. Tomchuk, Surf. Sci. 239, 143 (1990).
  7. E.D. Belotskii and P.M. Tomchuk, Int. Electronics 69, 169 (1990).
  8. U. Kreibig, Optical Properties of Metal Clusters (Springer, New York, 1995).
  9. A. Pinchuk, U. Kreibig, New J. Phys 5, 151.1 (2003).
  10. A. Pinchuk, G. von Plessen, and U. Kreibig, J. Phys. D 37, 3133 (2004).
  11. P.M. Tomchuk and N.I. Grigorchuk, Phys. Rev. B 73, 155423 (2006).
  12. N.I. Grigorchuk and P.M. Tomchuk, Phys. Rev. B 84, 085448 (2011).
  13. P.M. Tomchuk and B.M. Tomchuk, Zh. Eksp. Teor. Fiz. 112, 661 (1997).
  14. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1984).
  15. A.G. Lesskis, V.E. Pasternak, and A.A. Yushkanov, Zh. Eksp. Teor. Fiz. 83, 310 (1982).
  16. M.I. Grigorchuk and P.M. Tomchuk, Ukr. Fiz. Zh. 51, 9 (2006).
  17. A.G. Lesskis, A.A. Yushkanov, and Yu.I. Yalamov, Poverkhnost Fiz. Khim. Mekhan. 11, 11 (1987).