• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 10, p.1036-1041
https://doi.org/10.15407/ujpe60.10.1036    Paper

Litovchenko V.G.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Nauky Ave., Kyiv 03028, Ukraine; e-mail: lvg@isp.kiev.ua)

Photovoltage Spectroscopy Research of Solar Silicon Recombination Parameters

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: Fundamental recombination parameters of a photosensitive solar silicon material have been studied using the surface photovoltage spectroscopy. The method proposed is analyzed on the basis of photosensitive silicon structures of four types: industrial photosensitive Si wafers with the chemically etched (real) surface, structures with the implanted recombination-active Fe+ impurity, SiO2–Si structures with the surface-induced inversion channel, and structures with the diffused pn junction. A comparison with the formulas obtained for the spectra of direct, VSC, and inverse, 1/VSC, photovoltages in terms of the absorption coefficient k and its reciprocal quantity 1/k is carried out. The surface and bulk recombination rates and the distributions of recombination-active impurities, structural technological impurities, and defects in the near-surface charge region of solar silicon are calculated.

Key words: surface photovoltage spectroscopy, solar silicon, near-surface charge region.

References:

  1. W. Gartner, Phys. Rev. 105, 823 (1957).
  2. V.A. Zuev and V.G. Litovchenko, Phys. Status Solidi B 16, 751 (1966); V.A. Zuev, V.G. Litovchenko, and V.V. Antoshchuk, Surf. Sci. 32, 365 (1972).
  3. N.L. Dmitruk, Yu.V. Kryuchenko, V.G. Litovchenko, V.G. Popov, and M.A. Stepanova, Phys. Status Solidi A 124, 183 (1991).
  4. A.P. Gorban', V.G. Litovchenko, V.G. Popov, and A.A. Serba, Fiz. Tekh. Poluprovodn. 2, 1400 (1977).
  5. V.G. Litovchenko and A.P. Gorban', Fundamentals of Physics of Metal-Insulator-Semiconductor Microelectronic Systems (Naukova Dumka, Kyiv, 1978) (in Russian).
  6. L. Kronik and Y. Shapira, Surf. Sci. Rep. 37, 1 (1999).
  7. A.P. Gorban', V.P. Kostylev, A.V. Sachenko, A.A. Serba, and V.V. Chernenko, Optoelektr. Poluprovodn. Tekhn. 37, 61 (2002).
  8. A.V. Sachenko, V.P. Kostylev, and V.G. Litovchenko, Ukr. J. Phys. 58, 142 (2013).
  9. V.G. Litovchenko, V.M. Naseka, and A.A. Evtukh, Ukr. J. Phys. 57, 71 (2012).
  10. D. Kr¨uger, H. R¨ucker, B. Heinemann, V. Melnik, R. Kurps, and D. Bolze, J. Vac. Sci. Technol. B 22, 455 (2004).
  11. B. Romanjuk, V. Kladko, V. Melnik, V. Popov, V. Yukhymchuk, A. Gudymenko, Y. Olikh, G. Weidner, and D. Kr¨uger, Mat. Sci. Semicond. Process. 8, 171 (2005).
  12. O. Oberemok, V. Kladko, V. Litovchenko, B. Romanyuk, V. Popov, V. Melnik, A. Sarikov, O. Gudymenko, and J. Vanhellemont, Semicond. Sci. Technol. 29, 055008 (2014).
  13. V.G. Litovchenko, B.M. Romanyuk, V.G. Popov, V.P. Melnik, O.S. Oberemok, V.P. Kladko, I.P. Lisovskyi, V.V. Strelchuk, V.V. Chernenko, and V.O. Shapovalov, Metallofiz. Noveish. Tekhnol. 33, 873 (2011).
  14. V.G. Litovchenko and V.M. Strikha, Solar Power Industry: An Agenda for the World and Ukraine (K.I.S., Kyiv, 2015) (in Ukrainian).
  15. O. Korotchenko, A. Podolian, V. Kuryliuk, B. Romanyuk, V. Melnik, and I. Khatsevich, J. Appl. Phys. 111, 063501 (2012).
  16. O. Nichiporuk, A. Kaminski, M. Lemiti, A. Fave, S. Litvinenko, and V. Skryshevsky, Thin Solid Films 511–512, 248 (2006).
  17. O. Nichiporuk, A. Kaminski, M. Lemiti, A. Fave, and V. Skryshevsky, Sol. Energ. Mater. Sol. Cells 86, 517 (2005).