• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 10, p.1075-1081
https://doi.org/10.15407/ujpe60.10.1075    Paper

Pylyuk I.V., Kozlovskii M.P.

Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine
(1, Svientsitskii Str., Lviv 79011, Ukraine; e-mail: piv@icmp.lviv.ua)

Correlation Function and Susceptibility of Ising Magnet in a Vicinity of the Phase Transition Point

Section: General Problems of Theoretical Physics
Original Author's Text: Ukrainian

Abstract: The application of the method of collective variables to study the behavior of non-universal characteristics of a three-dimensional Ising-like system in the critical region has been illustrated by an example of the correlation function and the susceptibility. An analytic procedure for the calculation of those characteristics has been developed in the quartic-distribution approximation for order parameter fluctuations. The asymptotics of the correlation function at large distances obtained for the critical temperature (T = Tc) is shown to differ qualitatively from that in the T ≠ Tc case because of the presence of the critical regime region for all fluctuation modes.

Key words: three-dimensional Ising-like system, phase transition point, non-Gaussian distribution, correlation function, susceptibility.

References:

  1. I.R. Yukhnovskii, Phase Transitions of the Second Order. Collective Variables Method (Naukova Dumka, Kyiv, 1985) (in Russian).
  2. I.R. Yukhnovskii, Phase Transitions of the Second Order. Collective Variables Method (World Scientific, Singapore, 1987).
  3. I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Microscopic Theory of Phase Transitions in the Three-Dimensional Systems (Eurosvit, Lviv, 2001) (in Ukrainian).
  4. K.G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
  5. I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Ukr. Fiz. Zh. 57, 83 (2012).
  6. I.R. Yukhnovskii, M.P. Kozlovskii, and I.V. Pylyuk, Int. J. Mod. Phys. B 28, 1450160 (2014).
  7. V.K. Fedyanin, in Statistical Physics and Quantum Field Theory, edited by N.N. Bogolyubov (Nauka, Moscow, 1973) (in Russian), p. 241.
  8. Yu.A. Izyumov, F.A. Kassan-Ogly, and Yu.N. Skryabin, Field Methods in the Ferromagnetism Theory (Nauka, Moscow, 1974) (in Russian).
  9. A.A. Migdal, Zh. Eksp. Teor. Fiz. 59, 1015 (1970).
  10. I.V. Stasyuk, Fiz. Met. Metalloved. 31, 699 (1971).
  11. S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Springer, New York, 1995).
  12. S.V. Syomkin and V.P. Smagin, Fiz. Tverd. Tela 56, 1288 (2014).
  13. C. Bagnuls and C. Bervillier, Phys. Rev. B 24, 1226 (1981).
  14. M. Ferer, Phys. Rev. B 16, 419 (1977).
  15. M.-C. Chang and A. Houghton, Phys. Rev. Lett. 44, 785 (1980).
  16. G.V. Ryazanov, Zh. Eksp. Teor. Fiz. ` 54, 1010 (1968).
  17. C. Bervillier and C. Godreche, Phys. Rev. B 21, 5427 (1980).
  18. A. Aharony and M.E. Fisher, Phys. Rev. B 27, 4397 (1983).
  19. C. Bagnuls and C. Bervillier, Phys. Rev. B 32, 7209 (1985).
  20. C. Bervillier, Phys. Rev. B 34, 8141 (1986).
  21. M.P. Kozlovskii, I.V. Pylyuk, and I.R. Yukhnovskii, Teor. Mat. Fiz. 87, 293 (1991).
  22. I.R. Yukhnovskii and M.P. Kozlovskii, Preprint ITF-89- 69R (Institute for Theoretical Physics, Kiev, 1989) (in Russian).