• Українська
  • English

< Previous issue | >

Current issue   Ukr. J. Phys. 2015, Vol. 60, N 10, p.985-1006
https://doi.org/10.15407/ujpe60.10.0985    Paper

Simulik V.M.

Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
(21, Universytets’ka Str., Uzhgorod 88000, Ukraine; e-mail: vsimulik@gmail.com)

Derivation of the Dirac and Dirac-Like Equations of Arbitrary Spin from the Corresponding Relativistic Canonival Quantum Mechanics

Section: Fields and Elementary Particles
Original Author's Text: English

Abstract: The new relativistic equations of motion for the particles with spin s = 1, s = 3/2, and s = 2 and nonzero mass have been introduced. The description of the relativistic canonical quantum mechanics of the arbitrary mass and spin has been given. The link between the relativistic canonical quantum mechanics of the arbitrary spin and the covariant local field theory has been found. The manifestly covariant arbitrary-spin field equations that follow from the quantum mechanical equations have been considered. The covariant local field theory equations for a spin s = (1,1) particle-antiparticle doublet, spin s = (1,0,1,0) particle-antiparticle multiplet, spin s = (3/2,3/2) particle-antiparticle doublet, spin s = (2,2) particle-antiparticle doublet, spin s = (2,0,2,0) particle-antiparticle multiplet, and spin s = (2,1,2,1) particle-antiparticle multiplet have been introduced. The Maxwell-like equations for a boson with spin s = 1 and mass m > 0 have been introduced as well.

Key words: relativistic quantum mechanics, Schrödinger–Foldy equation, Dirac equation, Maxwell equations, arbitrary spin.

References:

  1. P.A.M. Dirac, Proc. R. Soc. Lond. A. 117, 610 (1928). CrossRef
  2. L.L. Foldy and S.A. Wouthuysen, Phys. Rev. 78, 29 (1950). CrossRef
  3. V.M. Simulik and I.Yu. Krivsky, Univ. J. Phys. Appl. 2, 115 (2014).
  4. P.A.M. Dirac, Proc. R. Soc. Lond. A. 155, 447 (1936). CrossRef
  5. H.J. Bhabha, Rev. Mod. Phys. 17, 200 (1945). CrossRef
  6. D.L. Weaver, C.L. Hammer, and R.H. Good, jr., Phys. Rev. 135, 241 (1964). CrossRef
  7. P.M. Mathews, Phys. Rev. 143, 978 (1966). CrossRef
  8. T.J. Nelson and R.H. Good, jr., Rev. Mod. Phys. 40, 508 (1968). CrossRef
  9. R.F. Guertin, Ann. Phys. (USA) 88, 504 (1974). CrossRef
  10. R.A. Kraicik and M.M. Nieto, Phys. Rev. D 15, 433 (1977). CrossRef
  11. R-K. Loide, I. Ots, and R. Saar, J. Phys. A 30, 4005 (1997). CrossRef
  12. D.M. Gitman and A.L. Shelepin, Int. J. Theor. Phys. 40, 603 (2001). CrossRef
  13. L.L. Foldy, Phys. Rev. 102, 568 (1956). CrossRef
  14. E.E. Salpeter, Phys. Rev. 87, 328 (1952). CrossRef
  15. L.L. Foldy, Phys. Rev. 122, 275 (1961). CrossRef
  16. R.A. Weder, Annal. de l'Institut H. Poincar´e, sec. A 20, 211 (1974).
  17. R.A. Weder, J. Funct. Anal. 20, 319 (1975). CrossRef
  18. I.W. Herbst, Comm. Math. Phys. 53, 285 (1977). CrossRef
  19. I.W. Herbst, Comm. Math. Phys. 55, 316 (1977). CrossRef
  20. P. Castorina, P. Cea, G. Nardulli, and G. Paiano, Phys. Rev. D 29, 2660 (1984). CrossRef
  21. L.J. Nickisch and L. Durand, Phys. Rev. D. 30, 660 (1984). CrossRef
  22. A. Martin and S.M. Roy, Phys. Lett. B 233, 407 (1989). CrossRef
  23. J.C. Raynal, S.M. Roy, V. Singh, A. Martin, and J. Stubble, Phys. Lett. B 320, 105 (1994). CrossRef
  24. L.P. Fulcher, Phys. Rev. D 50, 447 (1994). CrossRef
  25. J.W. Norbury, K.M. Maung, and D.E. Kahana, Phys. Rev. A 50, 3609 (1994). CrossRef
  26. W. Lucha and F.F. Schobert, Phys. Rev. A 54, 3790 (1996). CrossRef
  27. W. Lucha and F.F. Schobert, Phys. Rev. A 56, 139 (1997). CrossRef
  28. F. Brau, J. Math. Phys. 39, 2254 (1998). CrossRef
  29. F. Brau, J. Math. Phys. 40, 1119 (1999). CrossRef
  30. F. Brau, J. Math. Phys. 46, 032305 (2005). CrossRef
  31. F. Brau, J. Nonlin. Math. Phys. 12, Suppl. 1, 86 (2005).
  32. T.L. Gill and W.W. Zahary, J. Phys. A. 38, 2479 (2005). CrossRef
  33. Y. Chargui, L. Chetouani, and A. Trabelsi, J. Phys. A 42, 355203 (2009). CrossRef
  34. Y. Chargui, A. Trabelsi, and L. Chetouani, Phys. Lett. A 374, 2243 (2010). CrossRef