• Українська
  • English

<  | >

Ukr. J. Phys. 2015, Vol. 60, N 1, p.15-21
https://doi.org/10.15407/ujpe60.01.0015    Paper

Tolochkevich Yu.M., Anisimov I.O., Litoshenko T.E.

Taras Shevchenko National University of Kyiv,
Faculty of Radiophysics, Electronics, and Computer Systems
(4g, Academician Glushkov Ave., Kyiv 03022, Ukraine)

Dynamics of Charged Bunches in the Wakefield Excited by Them in Plasma

Section: Plasmas and gases
Language: Ukrainian

Abstract: The results of computer simulation concerning the dynamics of charged bunches in the wakefield created by them in homogeneous and inhomogeneous plasmas are reported. The proton and electron bunches in an electron-proton plasma are simulated, by using the particle-in-cell method. The simulation results are compared with those of analytical calculations. It is shown that the inverse influence of excited wakefields on ion bunches can be neglected at a distance of several tens of wakefield wavelengths, and such fields are excited only by the bunch fronts. For the electron bunches, the charge density profile becomes considerably distorted at distances of about the wake wavelength. In this case, some additional mechanisms of wakefield excitation emerge owing to the decay of the initial bunch into microbunches: associated with the Cherenkov resonance (for long bunches) and with the microbunch focusing.

Key words: charged bunches, wakefield, plasma.


  1. P. Chen, J.M. Dawson, R.W. Huff, and T. Katsouleas, Phys. Rev. Lett. 54, 693 (1985). CrossRef
  2. M.J. Hogan, T.O. Raubenheimer, A. Seryi, P. Muggli, T. Katsouleas, C. Huang, W. Lu, W. An, K.A. Marsh, W.B. Mori, C.E. Clayton, and C. Joshi, New J. Phys. 12, 055030 (2010). CrossRef
  3. A. Tremaine, J. Rosenzweig, and P. Schoessow, Phys. Rev. E 56, 7204 (1997). CrossRef
  4. V.I. Maslov and I.N. Onishchenko. Probl. At. Sci. Technol. Series: Plasma Electronics and New Acceleration Methods 4, 69 (2013).
  5. A. Bazzania, M. Giovannozzic, P. Londrillob, S. Sinigardia, and G. Turchettia, C. R. Mecanique 342, 647 (2014). CrossRef
  6. A. Caldwell and K.V. Lotov, Phys. Plasmas 18, 103101 (2011). CrossRef
  7. K.V. Lotov, Phys. Plasmas 20, 083119 (2013). CrossRef
  8. L. Yi, B. Shen, K. Lotov, L. Ji, X. Zhang, W. Wang, X. Zhao, Y. Yu, J. Xu, X. Wang, Y. Shi, L. Zhang, T. Xu, and Zh. Xu, Phys. Rev. ST Accel. Beams 16, 071301 (2013). CrossRef
  9. K.V. Lotov, V.I. Maslov, I.N. Onishchenko, and I.P. Yarovaya, Probl. At. Sci. Technol. Series: Plasma Electronics and New Acceleration Methods 4, 73 (2013).
  10. J. Vieira, Y. Fang, W.B. Mori, L.O. Silva, and P. Muggli, Phys. Plasmas 19, 063105 (2012). CrossRef
  11. T. Tajima and J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979). CrossRef
  12. I. Blumenfeld, C.E. Clayton, F.J. Decker, M.J. Hogan, C. Huang et al., Nature 445, 741 (2007). CrossRef
  13. I.O. Anisimov and K.I. Lyubich, J. Plasma Phys. 66, 157 (2001). CrossRef
  14. Yu.M. Tolochkevych, T.E. Litoshenko, and I.O. Anisimov, Probl. At. Sci. Technol., No. 4, 47 (2010).
  15. A.K. Berezin, G.P. Berezina, N.S. Erokhin, S.S. Moiseev, and Ya.B. Fainberg, Pis'ma Zh. Eksp. Teor. Fiz. 14, 149 (1971).
  16. M. Starodubtsev, C. Krafft, P. Thevenet, and A. Kostrov, Phys. Plasmas 6, 1427 (1999). CrossRef
  17. I.O. Anisimov and K.I. Lyubych, Zh. Fiz. Dosl. 4, 61 (2000).
  18. I.O. Anisimov and Yu.M. Tolochkevich, Ukr. J. Phys. 54, 454 (2009).
  19. I.O. Anisimov, P.V. Parashchenko, and Yu.M. Tolochkevych, Ukr. J. Phys. 55, 885 (2010).
  20. V.A. Balakirev, V.I. Karas', and I.V. Karas', Fiz. Plasmy 28, 144 (2002).
  21. R. Fedele, D. Jovanovi’c, F. Tanjia, and S. DeNicola, Nucl. Instrum. Meth. A 740, 180 (2014). CrossRef
  22. T. Katsouleas, Phys. Rev. A 3, 2056 (1986). CrossRef
  23. I.O. Anisimov, T.E. Litoshenko, and Yu.M. Tolochkevich, Probl. At. Sci. Technol., No. 6, 126 (2010).
  24. Yu.M. Tolochkevich, T.E. Litoshenko, and I.O. Anisimov, Probl. At. Sci. Technol., No. 4, 34 (2013).