• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 9, p.906-914
https://doi.org/10.15407/ujpe59.09.0906    Paper

Lysenkov E.A.1, Klepko V.V.2, Golovanets V.M.1, Demchenko V.L.2

1 V.O. Sukhomlyns’kyi Mykolayiv National University
(24, Nikolska Str., Mykolayiv 54030, Ukraine; e-mail: ealisenkov@mail.ru)
2 Institute of Macromolecular Chemistry, Nat. Acad. of Sci. of Ukraine
(148, Kharkivske Road, Kyiv 20160, Ukraine)

Electric Field Effect on the Percolative Behavior of Systems Based on Polyethylene Glycol and Carbon Nanotubes

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: Thermophysical properties and the percolative behavior of systems based on polyethylene glycol and carbon nanotubes formed under normal conditions and the action of a dc electric field have been studied, by using the differential scanning calorimetry and impedance spectroscopy methods. It is shown that the electric field substantially affect the behavior of nanotubes dispersed in the polymer matrix. Nanotubes are supposed to execute three basic types of motion (rotation, translation, and migration) under the field action, and the corresponding characteristic times are calculated. It is found that the percolation threshold decreases from 0.42% to 0.1% if nanofilled systems are formed in the electric field, which testifies to a substantial alignment of nanotubes in the polymer matrix.

Key words: nanocomposite, percolative behavior, carbon nanotubes, polyethylene glycol, dc electric field.

References:

  1. D.Y. Khang, J.L. Xiao, C. Kocabas, S. MacLaren, T. Banks, and H.Q. Jiang, Nano. Lett. 8, 124 (2008).
    https://doi.org/10.1021/nl072203s
  2. G.H. Gao, T. Cagin, and W.A. Goddard, Nanotechnology 9, 184 (1998).
    https://doi.org/10.1088/0957-4484/9/3/007
  3. X.J. Zhou, J.Y. Park, S.M. Huang, J. Liu, and P.L. Mceuen, Phys. Rev. Lett. 95, 146805 (2005).
    https://doi.org/10.1103/PhysRevLett.95.146805
  4. L.A. Bulavin, N.I. Lebovka, Y.A. Kyslyi, S.V. Khrapatyi, A.I. Goncharuk, I.A. Mel'nyk, and V.I. Koval'chuk, Ukr. J. Phys. 56, 217 (2011).
  5. S. Berber, Y.K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).
    https://doi.org/10.1103/PhysRevLett.84.4613
  6. Q. Cao and J.A. Rogers, Adv. Mater. 21, 29 (2009).
    https://doi.org/10.1002/adma.200801995
  7. C.Y. Lee, R. Sharma, A.D. Radadia, R.I. Masel, and M.S. Strano, Angew. Chem. Int. Edit. 47, 5018 (2008).
    https://doi.org/10.1002/anie.200704501
  8. E.A. Lysenkov, N.I. Lebovka, Y.V. Yakovlev, V.V. Klepko, and N.S. Pivovarova, Compos. Sci. Technol. 72, 1191 (2012).
    https://doi.org/10.1016/j.compscitech.2012.04.002
  9. E.A. Lysenkov, Y.V. Yakovlev, and V.V. Klepko, Ukr. J. Phys. 58, 378 (2013).
    https://doi.org/10.15407/ujpe58.04.0378
  10. N.I. Lebovka, E.A. Lysenkov, A.I. Goncharuk, Yu.P. Gomza, V.V. Klepko, and Yu.P. Boiko, J. Compos. Mater. 45, 2555 (2011).
    https://doi.org/10.1177/0021998311401107
  11. L.A. Bulavin, V.S. Savenko, N.I. Lebovka, A.I. Kuklin, D.V. Soloviov, and O.I. Ivankov, Nucl. Phys. At. Energy 14, 372 (2013).
  12. Y. Ma, B. Wang, Y. Wu, Y. Huang, and Y. Chen, Carbon 49, 4098 (2011).
    https://doi.org/10.1016/j.carbon.2011.06.068
  13. L.X. Benedict, S.G. Louie, and M.L. Cohen, Phys. Rev. B 52, 8541 (1995).
    https://doi.org/10.1103/PhysRevB.52.8541
  14. X.Q. Chen, T. Saito, H. Yamada, and K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001).
    https://doi.org/10.1063/1.1377627
  15. P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, and D. Meisel, J. Am. Chem. Soc. 126, 10757 (2004).
    https://doi.org/10.1021/ja0479888
  16. Y.F. Zhu, C. Ma, W. Zhang, R.P. Zhang, N. Koratkar, and J. Liang, J. Appl. Phys. 105, 054319 (2009).
    https://doi.org/10.1063/1.3080243
  17. P.F. Li and W. Xue, Nanosc. Res. Lett. 5, 1072 (2010).
    https://doi.org/10.1007/s11671-010-9604-3
  18. E.A. Lysenkov, Yu.P. Gomza, V.V. Klepko, and Yu.A. Kunytskyi, Fiz. Khim. Tverd. Tila 11, 361 (2010).
  19. A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polymer Sci. B 33, 1737 (1995).
    https://doi.org/10.1002/polb.1995.090331205
  20. V.A. Bershtein and V.M. Egorov, Differential Scanning Calorimetry of Polymers: Physics, Chemistry, Analysis, Technology (Ellis Horwood, New York, 1994).
  21. H.W. Chen and F.C. Chang, Polymer 42, 9763 (2001).
    https://doi.org/10.1016/S0032-3861(01)00520-1
  22. E.V. Lebedev, Phase Processes in Heterogeneous Polymer Systems (Naukova Dumka, Kyiv, 2012) (in Russian).
  23. J.M. Seprico, G.E. Wnek, and S. Krause, Macromolecules 24, 6879 (1991).
    https://doi.org/10.1021/ma00026a019
  24. L.S. Tonkopieva and V.G. Syromyatnikov, Polimer. Zh. 27, 249 (2005).
  25. C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise1, G. Sauti, P.T. Lillehei, and J.S. Harrison, J. Polymer Sci. B 44, 1751 (2006).
    https://doi.org/10.1002/polb.20823
  26. H.A. Pohl, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields (Cambridge Univ. Press, Cambridge, 1978).
  27. M. Monti, M. Natali, L. Torre, and J.M. Kenny, Carbon 50, 2453 (2012).
    https://doi.org/10.1016/j.carbon.2012.01.067
  28. M. Shao-Jie and G. Wan-Lin, Chinese Phys. Lett. 25, 270 (2008).
    https://doi.org/10.1088/0256-307X/25/1/073
  29. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1984).
  30. C.A. Martin, J.K.W. Sandler, A.H.Windle, M.-K. Schwarz, W. Bauhofer, and K. Schulte, Polymer 46, 877 (2005).
    https://doi.org/10.1016/j.polymer.2004.11.081
  31. E.F. Cruz, Y. Zheng, E. Torres, W. Li, W. Song, and K. Burugapalli, Int. J. Electrochem. Sci. 7, 3577 (2012).
  32. S. Kirkpatrick, Phys. Rev. Lett. 27, 1722 (1971).
    https://doi.org/10.1103/PhysRevLett.27.1722
  33. D. Stauffer and A. Aharony, Introduction to Percolation Theory (Taylor and Francis, London, 1994).