• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 9, p.874-880
https://doi.org/10.15407/ujpe59.09.0874    Paper

Ovechkin V.S.

I.I. Mechnikov Odesa National University, Department of Theoretical Physics
(2, Elizavetinska Str., Odesa 65001, Ukraine; e-mail: vadim.ovechkin@outlook.com)

Equation of State for a Two-Dimensional Coulomb Gas

Section: Plasmas and gases
Original Author's Text: English

Abstract: This work develops the cluster approach proposed by L.A. Bulavin and M.N. Malomuzh to the description of the phase diagram for a two-dimensional Coulomb gas. We restrict ourselves by the ensemble of the simplest clusters – dipole pairs. The effective interaction potential of dipole pair conserving a two particle configuration integral is constructed. In order to reflect more completely the long-range interaction in the system, the third virial coefficient is taken into account. The phase diagram of the Coulomb gas is analyzed on the basis of the generalized van der Waals equation of state, whose parameters are some functions of the temperature and the density. The position of the critical point is determined in different approximations. It is shown that this problem is essentially non perturbative.

Key words: two-dimensional Coulomb gas, van der Waals equation, critical point.


  1. G. Orkoulas and A.Z. Panagiotopoulos, J. Chem. Phys. 104, 7205 (1996).
  2. J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973).
  3. P. Minnhagen, Rev. Mod. Phys. 50, 1001 (1987).
  4. Y. Levine, X. Li, and M.E. Fisher, Phys. Rev. Lett. 73, 2716 (1994).
  5. Y. Levine and M.E. Fisher, Physica 225, 164 (1996).
  6. M.N. Malomuzh, J. Mol. Liq. 127, 40 (2006).
  7. M.N. Malomuzh, Ukr. J. Phys. 52, 1108 (2007).
  8. L.A. Bulavin and M.N. Malomuzh, Ukr. J. Phys. 53, 728 (2008).
  9. L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon Press, New York, 1980), Part 1.