• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 9, p.922-931
https://doi.org/10.15407/ujpe59.09.0922    Paper

Goliney I.Yu., Onykienko Ye.V.

Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine (47, Nauky Ave., Kyiv 03680, Ukraine; e-mail: igoliney@kinr.kiev.ua)

Resonant Enhancement of Molecular Excitation Intensity in Inelastic Electron Scattering Spectrum Owing to Interaction with Plasmons in Metallic Nanoshell

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: A quantum-mechanical model to calculate the electron energy-loss spectra (EELS) for the system of a closely located metallic nanoshell and a molecule has been developed. At the resonance between the molecular excitation and plasmon modes in the nanoshell, which can be provided by a proper choice of the ratio of the inner and outer nanoshell radii, the cross-section of inelastic electron scattering at the molecular excitation energy is shown to grow significantly, because the molecular transition borrows the oscillator strength from a plasmon. The enhancement of the inelastic electron scattering by the molecule makes it possible to observe molecular transitions with an electron microscope. The dependences of the EEL spectra on the relative arrangement of the molecule and the nanoshell, the ratio between the inner and outer nanoshell radii, and the scattering angle are plotted and analyzed.

Key words: inelastic electron scattering, plasmon resonance, plasmon, nanoparticle, molecular excitation enhancement.


  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  2. V.V. Klimov, Usp. Fiz. Nauk 178, 875 (2008).
  3. T. Hirakawa and P.V. Kamat, J. Am. Chem. Soc. 127, 3928 (2005).
  4. H. Atwater and A.Polman, Nature Mater. 9, 205 (2010).
  5. A.M. Gobin, E.M. Watkins, E. Quevedo, V.L. Colvin, and J.L. West, Nano Lett. 6, 745 (2010).
  6. J. Nelayah, Nature Phys. 3, 348 (2007).
  7. D. Ugarte, C. Colliex, and P. Trebbia, Phys.Rev. B 45, 4332 (1992).
  8. C.H. Chen and J. Silcox, Phys. Rev. Lett. 37, 937 (1976).
  9. D.W. McComb and A. Howie, Nucl. Instrum. Methods Phys. Res. 96, 569 (1995).
  10. O. Nicoletti, M. Wubs, N.A. Mortensen, W. Sigle, P.A. van Aken, and P.A. Midgley, Opt. Express 19, 15371 (2011).
  11. O. Nicoletti, F. de la Pena, R.L. Leary, D.J. Holland, C. Ducatti, and P.A. Midgley, Nature 502, 80 (2013).
  12. K. Kneipp, Ya. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Phys. Rev. Lett. 78, 1167 (1997).
  13. C.D. Geddes and J.R. Lakowicz, J. Fluoresc. 12, 121 (2002).
  14. I.Yu. Goliney and V.I. Sugakov, Phys. Rev. B 62, 11177 (2000).
  15. I.Yu. Goliney, V.I. Sugakov, and Yu.V. Kryuchenko, Phys. Rev. B 72, 075442 (2005).
  16. C. Ciraci, R.T. Hill, J.J. Mock, Y. Urzhumov, A.I. Fernindez-Dominguez, S.A. Maier, J.B. Pendry, A. Chilkoti, and D.R. Smith, Science 337, 1072 (2012).
  17. J. Kern, S. Grossmann, N.V. Tarakina, T. Hickel, M. Emmerling, M. Kamp, J.-S. Huang, P. Biagioni, J. Prangsma, and B. Hecht, Nano Lett. 12, 5504 (2012).
  18. J.A. Scholl, A.L. Koh, and J.A. Dionne, Nature 483, 421 (2012).
  19. I.Yu.Goliney and Ye.V.Onykienko, Nauk. Zapys. NAUKMA 126, 47 (2012).
  20. V.I. Sugakov and G.V. Vertsimakha, Phys. Rev. B 81, 235308 (2010).
  21. I.Yu. Goliney, V.I. Sugakov, L. Valkunas, and G.V. Vertsimakha, Phys. Chem. 404, 116 (2012).
  22. L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1977).