• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 8, p.787-792
https://doi.org/10.15407/ujpe59.08.0787    Paper

Lyashkov A.Yu.

Oles Gonchar National University of Dnipropetrovsk, Chair of Radioelectronics
(72, Gagarin Ave., Dnipropetrovsk 49010, Ukraine; e-mail: vdnu@yandex.ru)

Influence of Sintering Time on the Microstructure and Electric Properties of Low-Voltage Zinc Oxide-Based Varistor Ceramics

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: The results of experimental researches obtained for a varistor ceramics on the basis of zinc oxide are reported. The influence of the sintering time of the ceramics on its electric properties and microstructure is studied. The increase in the sintering time of ceramics is found to result in a broadening of the grain distribution spectrum over the grain size and in a shift of its maximum toward larger values. Specific features in the grain size distribution are revealed. It is found that, at the long-term sintering, the large grains form conductivity channels, with the barrier structure of the varistor ceramics being not destroyed, which gives rise to the growth of the real and imaginary components of the complex dielectric permittivity.

Key words: ceramics, varistor, semiconductor, current-voltage characteristic, dielectric permittivity.

References:

  1. V.B. Kvaskov, Semiconductor Devices with Bipolar Conductivity (Energoatomizdat, Moscow, 1988) (in Russian).
  2. W. Heywang, Amorphe und Polykristalline Halbleiter (Springer, Berlin, 1984).
    https://doi.org/10.1007/978-3-642-95447-4
  3. V.P. Cherepanov, A.K. Khrulev, and I.P. Bludov, Electronic Devices to Protect Electronic Facilities against Electric Overloads: A Handbook (Radio i Svyaz Moscow, 1994) (in Russian).
  4. S.-T. Kuo and W.-H. Tuan, J. Eur. Ceram. Soc. 30, 525 (2010).
    https://doi.org/10.1016/j.jeurceramsoc.2009.05.008
  5. W.S. Lee, W.T. Chen, T. Yang, Y.C. Lee, S.P. Lin, C.Y. Su, and C.L. Hu, J. Eur. Ceram. Soc. 26, 3753 (2006).
    https://doi.org/10.1016/j.jeurceramsoc.2005.12.027
  6. W.S. Lee, W.T. Chen, Y.C. Lee, T. Yang, C.Y. Su, and C. L. Hu, Ceram. Intern. 33, 1001 (2007).
    https://doi.org/10.1016/j.ceramint.2006.02.017
  7. L. Wang, G. Tang, and Z.-K. Xu, Ceram. Intern. 35, 487 (2009).
    https://doi.org/10.1016/j.ceramint.2008.01.011
  8. M. Schloffer, C. Teichert, P. Supancic, A. Andreev, Y. Hou, and Z. Wang, J. Eur. Ceram. Soc. 30, 1761 (2010).
    https://doi.org/10.1016/j.jeurceramsoc.2010.01.005
  9. S. Li, F. Xie, F. Liu, J. Li, and M.A. Ali, Mater. Lett. 59, 302 (2005).
    https://doi.org/10.1016/j.matlet.2004.10.008
  10. H.O. Toplan and Y. Karakas, Ceram. Intern. 27, 761 (2001).
    https://doi.org/10.1016/S0272-8842(01)00027-X
  11. M.-H. Wang, K.-A. Hu, B.-Y. Zhao, and N.-F. Zhang, Mater. Chem. Phys. 100, 142 (2006).
    https://doi.org/10.1016/j.matchemphys.2005.12.023
  12. Q. Wang, Y. Qin, G.J. Xu, L. Chen, Y. Li, L. Duan, Z.X. Li, Y.L. Li, and P. Cui, Ceram. Intern. 34, 1697 (2008).
    https://doi.org/10.1016/j.ceramint.2007.05.012
  13. M.-h. Wang, Q.-h. Tang, and C. Yao, Ceram. Intern. 36, 1095 (2010).
    https://doi.org/10.1016/j.ceramint.2009.12.006
  14. C. Tsonos, A. Kanapitsas, D. Triantis, C. Anastasiadis, I. Stavrakas, P. Pissis, and E. Neagu, Ceram. Intern. 37, 207 (2011).
    https://doi.org/10.1016/j.ceramint.2010.08.036
  15. Y.Q. Huang, L. Meidong, Z. Yike, L. Churong X. Donglin, and L. Shaobo, Mater. Sci. Eng. B 86, 232, (2001).
    https://doi.org/10.1016/S0921-5107(01)00688-2
  16. M.-h. Wang, C. Yao, and N.-f. Zhang, J. Mater. Process. Techn. 202, 406 (2008).
    https://doi.org/10.1016/j.jmatprotec.2007.09.033
  17. N. Daneu, N.N. Gramc, A. Recnik, M.M. Krzmanc, and S. Bernik, J. Eur. Ceram. Soc. 33, 335 (2013).
    https://doi.org/10.1016/j.jeurceramsoc.2012.08.023
  18. V.B. Kvaskov and M.A. Chernysheva, Electrophysical Properties and Application of Metal Oxide Varistors (Informelektro, Moscow, 1985) (in Russian).
  19. C.-W. Nahm, Ceram. Intern. 35, 2679 (2009).
    https://doi.org/10.1016/j.ceramint.2009.03.011
  20. C.-W. Nahm, Mater. Sci. Eng. B 133, 91 (2006).
    https://doi.org/10.1016/j.mseb.2006.06.001
  21. D. Xu, L. Shi, Z. Wu, Q. Zhong, and X. Wu, J. Eur. Ceram. Soc. 29, 1789 (2009).
    https://doi.org/10.1016/j.jeurceramsoc.2008.10.020
  22. D. Fernandez-Hevia, M. Peiteado, J. de Frutos, A.C. Caballero, and J.F. Fernandez, J. Eur. Ceram. Soc. 24, 1205 (2004).
    https://doi.org/10.1016/S0955-2219(03)00411-4
  23. Yu.M. Tairov and V.F. Tsvetkov, Technology of Semiconductor and Dielectric Materials (Lan', Moscow, 2002) (in Russian).
  24. A.L. Khalaf Abdullah, M.D. Termanini, F. Alhaj Omar, Energy Procedia 19, 128 (2012).
    https://doi.org/10.1016/j.egypro.2012.05.193
  25. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).
    https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  26. Ya.E. Geguzin, Physics of Sintering (Nauka, Moscow, 1984) (in Russian).
  27. Physico-Chemical Properties of Oxides: A Handbook, edited by G.V. Samsonova (Metallurgiya, Moscow, 1978) (in Russian).
  28. K. Okazaki, Ceramic Engineering for Dielectrics (Gakkensha, Tokyo, 1983).
  29. R. Einzinger, Annu. Rev. Mater. Sci. 17, 299 (1987).
    https://doi.org/10.1146/annurev.ms.17.080187.001503
  30. C.-W. Nahm, Mater. Sci. in Semicond. Process. 16, 778 (2013).
    https://doi.org/10.1016/j.mssp.2012.12.026
  31. D. Xu, X. Cheng, H. Yuan, J. Yang, and Y. Lin, J. Alloys Comp. 509, 9312 (2011).
  32. A.S. Tonkoshkur, Ukr. Fiz. Zh. 23, 2030 (1978).
  33. Kh.S. Valeev and V.B Kvaskov, Nonlinear Metal-Oxide Semiconductors (Energoizdat, Moscow, 1983) (in Russian).
  34. G.I. Epifanov and Yu.A. Moma, Solid State Electronics (Vysshaya Shkola, Moscow, 1986) (in Russian).
  35. I.V. Gomilko and A.S. Tonkoshkur, Visn. Dnipropetrovsk. Univ. Ser. Fiz. Radioelektron. 3, N 2, 15 (1998).
  36. I.A. Myasnikov, V.Ya. Sukharev, L.Yu. Kupriyanov, and S.A. Zav'yalov, Semiconductor Sensors in PhysicoChemical Researches (Nauka, Moscow, 1991) (in Russian).