• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 8, p.775-780
https://doi.org/10.15407/ujpe59.08.0775    Paper

Brodin A.1, Turiv T.2, Nazarenko V.2

1 National Technical University of Ukraine “KPI”
(37, Peremogy Ave., Kyiv 03056, Ukraine; e-mail: alex.brodin@gmail.com)
2 Institute of Physics, Nat. Acad. of Sci. of Ukraine
(46, Prosp. Nauky, Kyiv 03028, Ukraine)

Anomalous Diffusion: Single Particle Trajectory Analysis

Section: Soft matter
Original Author's Text: English

Abstract: Single particle tracking data are usually analyzed in terms of the mean square displacement (MSD) which exhibits, in the case of Brownian particles undergoing the anomalous diffusion, a time dependence that is slower (subdiffusion) or faster (superdiffusion) than a linear one. The particle velocity autocorrelation function (VAF), which is directly related to the underlying dynamics of the host medium that brings about the anomalous diffusion, can then be obtained as the second time derivative of MSD. We examine the possibility to obtain the mean velocity autocorrelation function (MVAF) directly from the particle trace data and analyze its relation to the true VAF for an instantaneous velocity. So long as the sampling time interval is much shorter than the correlation time, MVAF gives an accurate estimate of VAF. Data analysis procedures are illustrated, by using the data generated within a simple stochastic model of superdiffusion.

Key words: Brownian motion, anomalous diffusion, single particle tracking, mean square displacement, velocity autocorrelation function.

References:

  1. J. Gelles, B.J. Schnapp, and M.P. Sheetz, Nature 331, 450 (1988).
    https://doi.org/10.1038/331450a0
  2. J.C. Crocker and D.G. Grier, J. Colloid Interface Sci. 179, 298 (1996).
    https://doi.org/10.1006/jcis.1996.0217
  3. P. Habdas and E.R. Weeks, Curr. Opin. Colloid Interface Sci. 7, 196 (2002).
    https://doi.org/10.1016/S1359-0294(02)00049-3
  4. A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
    https://doi.org/10.1038/nature09163
  5. O. Otto, F. Czerwinski, J.L. Gornall, G. Stober, L.B. Oddershede, R. Seidel, and U.F. Keyser, Opt. Express 18, 22722 (2010).
    https://doi.org/10.1364/OE.18.022722
  6. C.D. Saunter, Biophys. J. 98, 1566 (2010).
    https://doi.org/10.1016/j.bpj.2009.12.4297
  7. E. Toprak, C. Kural, and P.R. Selvin, Methods Enzymol. 475, 1 (2010).
    https://doi.org/10.1016/S0076-6879(10)75001-1
  8. O. Otto, J.L. Gornall, G. Stober, F. Czerwinski, R. Seidel, and U.F. Keyser, J. Opt. 13, 044011 (2011).
    https://doi.org/10.1088/2040-8978/13/4/044011
  9. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).
    https://doi.org/10.1002/andp.19053220806
  10. M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906).
    https://doi.org/10.1002/andp.19063261405
  11. P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).
  12. I.Y. Wong, M.L. Gardel, D.R. Reichman, E.R. Weeks, M.T. Valentine, A.R. Bausch, and D.A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).
    https://doi.org/10.1103/PhysRevLett.92.178101
  13. M.M. Alam and R. Mezzenga, Langmuir 27, 6171 (2011).
    https://doi.org/10.1021/la200116e
  14. D.S. Banks and C.Fradin, Biophys. J. 89, 2960 (2005).
    https://doi.org/10.1529/biophysj.104.051078
  15. J. Sprakel, J. van der Gucht, M.A.C. Stuart, and N.A.M. Besseling, Phys. Rev. E 77, 061502 (2008).
    https://doi.org/10.1103/PhysRevE.77.061502
  16. T.V. Ratto and M.L. Longo, Langmuir 19, 1788 (2003).
    https://doi.org/10.1021/la0261803
  17. J. Sprakel, J. van der Gucht, M. A. C. Stuart, and N. A. M. Besseling, Phys. Rev. Lett. 99, 208301 (2007).
    https://doi.org/10.1103/PhysRevLett.99.208301
  18. S.C. Weber, A.J. Spakowitz, and J.A. Theriot, Phys. Rev. Lett. 104, 238102 (2010).
    https://doi.org/10.1103/PhysRevLett.104.238102
  19. A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990).
    https://doi.org/10.1103/PhysRevLett.65.2201
  20. Y. Gambin, G. Massiera, L. Ramos, C. Ligoure, and W. Urbach, Phys. Rev. Lett. 94, 110602 (2005).
    https://doi.org/10.1103/PhysRevLett.94.110602
  21. R. Ganapathy, A.K. Sood, and S. Ramaswamy, Europhys. Lett. 77, 18007 (2007).
    https://doi.org/10.1209/0295-5075/77/18007
  22. R. Angelico, A. Ceglie, U. Olsson, G. Palazzo, and L. Ambrosone, Phys. Rev. E 74, 031403 (2006).
    https://doi.org/10.1103/PhysRevE.74.031403
  23. X.-L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000); Ibid. 86, 557 (2001).
    https://doi.org/10.1103/PhysRevLett.86.557
  24. G.L. Paul and P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981).
    https://doi.org/10.1088/0305-4470/14/12/025
  25. T. Turiv, I. Lazo, A. Brodin, B.I. Lev, V. Reiffenrath, V.G. Nazarenko, and O.D. Lavrentovich, Science 342, 1351 (2013).
    https://doi.org/10.1126/science.1240591
  26. A. Brodin, Ukr. J. Phys. 58, 237 (2013).
    https://doi.org/10.15407/ujpe58.03.0237
  27. X. Michalet, Phys. Rev. E 82, 041914 (2010).
    https://doi.org/10.1103/PhysRevE.82.041914
  28. H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973).
    https://doi.org/10.1103/PhysRevB.7.4491
  29. V.M. Kenkre, R. K¨uhne, and P. Reineker, Z. Phys. B 41, 177 (1981).
    https://doi.org/10.1007/BF01293416
  30. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  31. L.E. Reichel, A Modern Course in Statistical Physics (Wiley, New York, 1998).