• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 8, p.819-825
https://doi.org/10.15407/ujpe59.08.0819    Paper

Makhanets O.M., Kuchak A.I., Gutsul V.I.

Yu. Fed’kovich National University of Chernivtsi
(2, Kotsyubyns’kyi Str., 58012, Chernivtsi, Ukraine; e-mail: ktf@chnu.edu.ua)

Spectral Parameters of Electron in a Multishell Semiconductor Cylindrical Nanotube with a Donor Impurity at Its Axis

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The spectral parameters of an electron in the multishell semiconductor cylindrical nanotube with a donor impurity at its axis have been studied in the framework of the effective mass and rectangular potential models, by using the modified Bethe variational method. The electronimpurity binding energies and the oscillator strengths of intra-band optical quantum transitions have been analyzed as functions of the geometrical parameters of a combined nanotube composed of semiconductors GaAs and Al0.4Ga0.6As.

Key words: semiconductor nanotube, donor impurity, binding energy, oscillator strength.

References:

  1. P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 88, 013110 (2006).
    https://doi.org/10.1063/1.2161576
  2. P. Mohan, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 88, 133105 (2006).
    https://doi.org/10.1063/1.2189203
  3. M. Heigoldt, J. Arbiol, D. Spirkoska et al., J. Mater. Chem. 19, 840 (2009).
    https://doi.org/10.1039/b816585h
  4. A. Fontcuberta i Morral, D. Spirkoska, J. Arbiol et al., Small 4, 899 (2008).
    https://doi.org/10.1002/smll.200701091
  5. O.M. Makhanets, N.R. Tsiupak, O.M. Voitsekhivska, Semicond. Phys. Quant. Electr. Optoelectr. 15, 156 (2012).
    https://doi.org/10.15407/spqeo15.02.156
  6. O.M. Makhanets, N.R. Tsiupak, and V.I. Gutsul, Ukr. Fiz. Zh. 57, 1060 (2012).
  7. O.M. Makhanets, V.I. Gutsul, N.R. Tsiupak et al., Condens. Matter Phys. 15, 33704 (2012).
    https://doi.org/10.5488/CMP.15.33704
  8. Y. Yang, O. Chen, A. Angerhofer, and Y. Charles Cao, J. Am. Chem. Soc. 128, 12428 (2006).
    https://doi.org/10.1021/ja064818h
  9. N. Pradhan, D. Goorskey, J. Thessing, and X. Peng, J. Am. Chem. Soc. 127, 17586 (2005).
    https://doi.org/10.1021/ja055557z
  10. I.F.I. Mikhail, S.B.A. El Sayed, Superlatt. Microstruct. 55, 198 (2013).
    https://doi.org/10.1016/j.spmi.2012.12.009
  11. S. Aktas, F.K. Boz, and S.S. Dalgic, Physica E 28, 96 (2005).
    https://doi.org/10.1016/j.physe.2005.02.002
  12. B.Zh. Poghosyan, Nanoscale Res. Lett. 2, 515 (2007).
    https://doi.org/10.1007/s11671-007-9084-2
  13. U. Yesilgul, S. Sakiroglu, E. Kasapoglu et al., Superlatt. Microstruct. 48, 106 (2010).
    https://doi.org/10.1016/j.spmi.2010.04.003
  14. N. Porras Montenegro, J. Lopez-Gondar, and L.E. Oliveira, Phys. Rev. B 43, 1824 (1991).
    https://doi.org/10.1103/PhysRevB.43.1824
  15. I.F.I. Mikhail and S.B.A. El Sayed, Physica E 42, 2307 (2010).
    https://doi.org/10.1016/j.physe.2010.05.010
  16. F.A.P. Osorio, A.N. Borges, A.A. Caparica, and J.R. Leite, Solid State Commun. 103, 375 (1997).
    https://doi.org/10.1016/S0038-1098(97)00168-3
  17. M. Tkach, O. Makhanets, M. Dovganiuk, and O. Voitsekhivska, Physica E 41, 1469 (2009).
    https://doi.org/10.1016/j.physe.2009.04.018
  18. M.V. Tkach" V.A. Golovatskyi, O.M. Voitsekhivska et al., Zh. Fiz. Dosl. 4, 342 (2000).
  19. G.G. Zegrya, N.V. Tkach, I.V. Boiko, and Yu.A. Seti, Fiz. Tverd. Tela 55, 2067 (2013).
  20. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer, Berlin, 1957).
    https://doi.org/10.1007/978-3-662-12869-5
  21. T. Ogawa and T. Takagahara, Phys. Rev. B 44, 8138 (1991).
    https://doi.org/10.1103/PhysRevB.44.8138
  22. M. Masale, Physica B 292, 241 (2000).
    https://doi.org/10.1016/S0921-4526(00)00471-3
  23. M. Masale, Physica B 291, 256 (2000).
    https://doi.org/10.1016/S0921-4526(99)02287-5