• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 7, p.696-705
https://doi.org/10.15407/ujpe59.07.0696    Paper

Sukhachov P.O.

Faculty of Physics, Taras Shevchenko National University of Kyiv
(4-g, Academician Glushkov Prosp., Kyiv 03680, Ukraine; e-mail: pavel.sukhachov@gmail.com)

Gap Generation in Weyl Semimetals in a Model with Local Four-Fermion Interaction

Section: Solid matter
Original Author's Text: English

Abstract: We study the gap generation in Weyl semimetals in a model with local four-fermion interaction. It is shown that there exists a critical value of coupling constant separating the symmetric and broken symmetry phases, and the corresponding phase diagram is described. The gap generation in a more general class of Weyl materials with small bare gap is studied, and the quasiparticle energy spectrum is determined. It is found that, in this case, the dynamically generated gap leads to the additional splitting of the quasiparticle energy bands.

Key words: Weyl semimetals, gap generation, quasiparticle energy spectrum.


  1. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 831057 (2011).
  2. M.Z. Hasan and C. L. Kaney Rev. Mod. Phys. 82, 823045 (2010).
  3. Y. Ando J. Phys. Soc. Jpn. 82, 102001 (2013).
  4. M.H. Cohen and E.I. Blount, Phil. Mag. 5, 115 (1960).
  5. P.A. Wolff, J. Phys. Chem. Solids 25, 1057 (1964).
  6. L.A. Fal'kovskii, Sov. Phys. Usp. 11, 1 (1968).
  7. V.S. Edel'man, Adv. Phys. 25, 555 (1976);
    Sov. Phys. Usp. 20, 819 (1977).
  8. Z. Wang, Y. Sun, X. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
  9. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).
  10. Z.K. Liu, B. Zhou, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.-K. Mo, Y. Zhang, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y.L. Chen, Science 343, 864 (2013).
  11. M. Neupane, SuY. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M.Z. Hasan, e-print arXiv:1309.7892v1 (2013).
  12. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buechner, and R. J. Cava, e-print arXiv:1309.7978v1 (2013).
  13. H.-J. Kim, Ki-S. Kim, J.F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Phys. Rev. Lett. 111, 246603 (2013).
  14. E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. B 88, 165105 (2013).
  15. Z. Wang and S.-C. Zhang, Phys. Rev. B 87, 161107(R) (2013).
  16. H. Wei, S.-Po Chao, and V. Aji, Phys. Rev. Lett. 109, 196403 (2012).
  17. K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129 (2011).
  18. H.B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
  19. E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. C 80, 032801(R) (2009).
  20. E.V. Gorbar, V.A. Miransky, and I.A. Shovkovy, Phys. Rev. D 83, 085003 (2011).
  21. A.A. Zyuzin and A.A. Burkov, Phys. Rev. B 86, 115133 (2012).
  22. J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D 10, 8, 2428 (1974).
  23. A.I. Larkin and Y.N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965).
  24. P. Fulde and R.A. Ferrell, Phys. Rev. 135, A550 (1964).
  25. K. Malik, D. Das, D. Mondal, D. Chattopadhyay, A.K. Deb, S. Bandyopadhyay, A. Banerjee, J. of Applied Physics 112, 083706 (2012).
  26. J. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).