• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 7, p.663-676
https://doi.org/10.15407/ujpe59.07.0663    Paper

Lompay R.R.1, Petrov A.N.2

1 Faculty of Physics, Uzhgorod National University
(54, Voloshyna Str., Uzhgorod 88000, Ukraine; e-mail: rlompay@gmail.com)
2 M.V. Lomonosov Moscow State University, Sternberg Astronomical Institute
(13, Universitetskii Pr., Moscow 119992, Russia; e-mail: alex.petrov55@gmail.com)

Covariant Differential Identities and Conservation Laws in Metric-Torsion Theories of Gravitation

Section: Fields and elementary particles
Original Author's Text: English

Abstract: The general manifestly generally covariant formalism for constructing the conservation laws and the conserved quantities in arbitrary metric-torsion theories of gravitation, which recently has been elaborated by the authors, is presented.

Key words: diffeomorphic invariance, manifest covariance, differential identities, conservation laws, stress-energy-momentum tensors, spin tensors, metric-torsion theories, gravity, Riemann–Cartan geometry

References:

  1. R.R. Lompay and A.N. Petrov, J. Math. Phys. 54, 062504 (2013), arXiv:1306.6887 [gr-qc].
    https://doi.org/10.1063/1.4810017
  2. R.R. Lompay and A.N. Petrov, J. Math. Phys. 54, 102504 (2013), arXiv:1309.5620 [gr-qc].
    https://doi.org/10.1063/1.4826478
  3. R.R. Lompay and A.N. Petrov, Covariant differential identities and conservation laws in metric-torsion theories of gravitation. III. Killing vectors, boundary terms, and applications(2013), will be submitted to J. of Math. Phys.
  4. P.G. Bergmann, Phys. Rev. 75, 680 (1949).
    https://doi.org/10.1103/PhysRev.75.680
  5. P.G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953).
    https://doi.org/10.1103/PhysRev.89.4
  6. N. Mizkjewitsch, Ann. Phys. (Leipzig) 456, 319 (1957).
    https://doi.org/10.1002/andp.19574560603
  7. N.V. Mitskevich, Physical Fields in General Theory of Relativity (Nauka, Moscow, 1969) (in Russian).
  8. N.V. Mitskevich, A.P. Efremov, and A.I. Nesterov, The Field Dynamics in General Theory of Relativity (Energoatomizdat, Moscow, 1985) (in Russian).
  9. F. Klein, Nachr. K¨onigl. Gesellsch. Wissensch. G¨ottingen. Math.-phys. Klasse 171-–189 (1918).
  10. A. Trautman, Bull. l'Acad. Polon. Sci., S´er. math., astr. et phys. 20, 185 (1972).
  11. A. Trautman, Bull. l'Acad. Polon. Sci., S´er. math., astr. et phys. 20, 503 (1972).
  12. A. Trautman, in The Physicists Conception of Nature, edited by J. Mehra (D. Reidel, Boston, 1973), pp. 179—198.
    https://doi.org/10.1007/978-94-010-2602-4_8
  13. A. Trautman, in General Relativity and Gravitation. One Hundred Years after the Birth of Albert Einstein, edited by A. Held (Plenum Press, New York, 1980), vol. 1, pp. 287–308.
  14. F.W. Hehl, Gen. Relativ. Gravit. 4, 333 (1973).
    https://doi.org/10.1007/BF00759853
  15. F.W. Hehl, Gen. Relativ. Gravit. 5, 491 (1974).
    https://doi.org/10.1007/BF02451393
  16. F.W. Hehl, P. von der Heyde, G.D. Kerlich, and J.M. Nester, Rev. Mod. Phys. 48, 393 (1976).
    https://doi.org/10.1103/RevModPhys.48.393
  17. A.N. Petrov, Conservation laws in GR and their applications (2000), reported on the Intern. Workshop on Geometrical Physics, NCTS in Hsinchu, Taiwan, July 24–26, 2000. Online version: http://www.astronet.ru/db/msg/1170672 (in Russian).