• Українська
  • English

< | Next issue >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 7, p.737-742
https://doi.org/10.15407/ujpe59.07.0737    Paper

Ushcats M.V.

Admiral Makarov National University of Shipbuilding
(9, Stalingrad Heroes Str., Mykolaiv 54025, Ukraine; e-mail: mykhailo.ushcats@nuos.edu.ua)

Modification of the Mayer Sampling Method for the Calculation of High-Order Virial Coefficients

Section: General problems of theoretical physics
Original Author's Text: Ukrainian

Abstract: A technique for the calculation of high-order virial coefficients, which combines the quadrature integration and the Mayer sampling Monte Carlo method (MSMC), is proposed. Unlike the original MSMC, this technique does not require to know the reference coefficients for the hardsphere potential and can be used in a wide range of temperatures and for various interaction potentials. In addition, the proposed method has a higher accuracy at lower computational costs. It has been used to obtain some new data on the seventh virial coefficient of the LennardJones (12-6) model.

Key words: virial coefficient, irreducible cluster integral, Mayer’s function, Mayer sampling, Monte Carlo method.


  1. A. Isihara, Statistical physics (Academic Press, New York, 1971).
  2. J.E. Mayer and M.G. Mayer, Statistical Mechanics (Wiley, New York, 1977).
  3. M.V. Ushcats and S S. Koval, Fiz. Aerodispers. Sist. 46, 64 (2009).
  4. M.V. Ushcats, Visn. Kharkiv. Nats. Univ. 17, 6 (2012).
  5. M.V. Ushcats, Phys. Rev. Lett. 109, 040601 (2012).
  6. M.V. Ushcats, Phys. Rev. E 87, 042111 (2013).
  7. M.V. Ushcats, J. Chem. Phys. 138, 094309 (2013).
  8. J.A. Barker, P.J. Leonard, and A. Pompe, J. Chem. Phys. 44, 4206 (1966).
  9. M.V. Ushcats, S.S. Koval, and S.V. Koval, MOTROL 14, 119 (2012).
  10. M.V. Ushcats, Ukr. Fiz. Zh. 59, No. 2, 173 (2014).
  11. J.K. Singh and D.A. Kofke, Phys. Rev. Lett. 92, 220601 (2004).
  12. A.J. Schultz and D.A. Kofke, Mol. Phys. 107, 2309 (2009).
  13. A.J. Schultz, N.S. Barlow, V. Chaudhary, and D.A. Kofke, Mol. Phys. 111, 535 (2013).
  14. D. Frenkel and B. Smit, Understanding Molecular Simulation – From Algorithms to Applications (Academic Press, New York, 2002).
  15. W.G. Hoover and A.G. De Rocco, J. Chem. Phys. 36, 3141 (1962).
  16. C.H. Bennett, J. Comput. Phys. 22, 245 (1976).
  17. V.I. Krylov, Approximate Calculation of Integral s (Dover, Mineola, NY, 2006).
  18. P. L'Ecuyer, Math. Comput.65, 203 (1996).