• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 6, p.622-627
https://doi.org/10.15407/ujpe59.06.0622    Paper

Kurchak A.I., Strikha M.V.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: maksym_strikha@hotmail.com)

Conductivity of Graphene on Ferroelectric PVDF-TrFE

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: The theory of conductivity in graphene grown by the chemical vapor deposition on a poly[(vinylidenefluoride-co-trifluoroethylene] (PVDF-TrFE) ferroelectric film has been developed with regard for the charge carrier scattering at large-scale potential nonuniformities created by both the domain structure of the ferroelectric and a nonuniform distribution of chemical dopants over the graphene surface. As the correlation length of nonuniformities increases, the graphene resistivity has been shown to decrease, and, in the case of a sufficiently uniform distribution of chemical dopants and the sufficiently large domain sizes, to achieve values of 100 Ω and less. Such values make the “graphene on PVDF-TrFE” system competitive with standard conductive and transparent indium tin oxide coverings for photovoltaics. The theoretical results have been compared with experimental data.

Key words: conductivity of graphene, PVDF-TrFE ferroelectric film, chemical vapor deposition.


  1. M.V. Strikha, Ukr. Fiz. Zh. Oglyady 7, 31 (2012).
  2. M.V. Strikha, Ukr. J. Phys. Opt. 13, Suppl. 3, S5 (2012).
  3. X. Hong, K. Zou, A.M. DaSilva, C.H. Ahn, and J. Zhu, Solid State Commun. 132, 1365 (2012).
  4. Y. Zheng, G.-X. Ni, C.-T. Toh et al., Appl. Phys. Lett. 94, 163505 (2009).
  5. Y. Zheng, G.-X. Ni, C.-T. Toh et al., Phys. Rev. Lett. 105, 166602 (2010).
  6. S. Raghavan, I. Stolichnov, N. Setter et al., Appl. Phys. Lett. 100, 023507 (2012).
  7. X. Hong, J. Hoffman, A. Posadas et al., Appl. Phys. Lett. 97, 033114 (2010).
  8. Y. Zheng, G.-X. Ni, S. Bae et al., Europhys. Lett. 93, 17002 (2011).
  9. E.B. Song, B. Lian, S.M. Kim et al., Appl. Phys. Lett. 99, 042109 (2011).
  10. M.V. Strikha, Ukr. J. Phys. Opt. 12, 162 (2011).
  11. M.V. Strikha, Ukr. J. Phys. Opt. 13, 45 (2012).
  12. G.-X. Ni, Y. Zheng, S. Bae, C.Y. Tan, O. Kahya, J. Wu, B.H. Hong, K. Yao, and B. Ozyilmaz, ACS NANO 6, 3935 (2012).
  13. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Brooth, T. Stauber, N.M.R. Peres, and A.K. Geim, Science 320, 5881 (2008).
  14. F.T. Vasko and V. Ryzhii, Phys. Rev. B 76, 233404 (2007).
  15. S. Das Sarma, S. Adam, E.H. Hwang, and E. Rossi, Rev. Mod. Phys. 83, 407 (2011).
  16. V. Fridkin and S. Ducharme, Ferroelectricity at the Nanoscale. Basics and Applications (Springer, Berlin, 2014).
  17. J. Heo, H.C. Chung, S.-H. Lee et al., Phys. Rev. B 84, 035421 (2011).
  18. M.V. Strikha and F.T. Vasko, J. Phys.: Condens. Matter 9, 663 (1997).
  19. Yu.A. Kruglyak, N.Yu. Kruglyak, and M.V. Strikha, Sensorn. Elektr. Mikrosist. Tekhnol. 3, No. 4, 5 (2012).
  20. B. Guo, L. Fang, B. Zhang, and J.R. Gong, Insciences J. 1, 80 (2011).