• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 6, p.601-611
https://doi.org/10.15407/ujpe59.06.0601    Paper

Gorbach T.Ya., Smertenko P.S., Venger E.F.

V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(45, Prosp. Nauky, Kyiv 03680, Ukraine; e-mail: smertenko@isp.kiev.ua)

Investigation of Photovoltaic and Optical Properties of Self-Organized Organic-Inorganic Hybrids Using Aromatic Drugs and Patterned Silicon

Section: Solid matter
Original Author's Text: English

Abstract: The effect of incorporation of the functional groups of aromatic moleculas onto the Si surface has been investigated by photovoltaic (PV) and photoluminescence (PL) characteristics, infrared (IR) spectroscopy, scanning electron microscopy (SEM), and optical microscopy (OM). To realize the organic-inorganic hybrids, the thin (10–100 nm) layers of heteroatom aromatic pharmaceutical drugs (APD) such as clonidine hydrochloride (CLON), procainamide hydrochloride (PRO), and сyanocobalamin (CYCAM – B12 vitamin) were formed by the chemical solution deposition process on the Si patterned surface at room temperature under laboratory ambient conditions. The hybrids have shown: (i) the solar energy conversation with an efficiency up to 6–7% in dependence on the chemical solution media and the surface and interface morphologies; (ii) the highest efficiency of 8.4% in CLON–Si hybrids produced in a mixed solution with a layer 30 nm in thickness and a self-organized net-like surface morphology; (iii) the intense photoluminescence in the waverange of 400–900 nm, luminescence profile, and peak position suggest the vibronic origin of this band; (iv) the presence of characteristic bands associated to the functional groups containing nitrogen (amines NHx (x = 0, 1, 2), amides OCN, cyanonitrile CN), carbon and/or hydrogen-hydrocarbons (CHx (x = 1, 2, 3)), oxygen (hydroxyl OH, peptide CO), halogene (chloroalkane) and phosphorus (phosphate OPO(OH)2). Possible principles of operation of APD–Si hybrids are discussed

Key words: aromatic drugs, patterned silicon, photovoltaic and photoluminescence characteristics, infrared spectroscopy, scanning electron microscopy, optical microscopy, clonidine hydrochloride, procainamide hydrochloride, сyanocobalamin.


  1. J.M. Buryak, Chem. Rev. 102, 1271 (2002).
  2. E.L. Aleksandrova, Semicond. 38, 1115 (2004).
  3. F. Tao, S.L. Bernasek, and Guo-Quin Xu, Chem. Rev. 109, 3991 (2009).
  4. M.A. Green, Physica E 14, 65 (2002).
  5. A. Goetzberger, C. Hebling, and H.W. Schook, Mater. Sci. Eng. R 40, 1 (2003).
  6. D.J. Milliron, I. Gur, and A.P. Alivisatos, MRS Bull. 30, 41 (2005).
  7. S. Gunes and N.S. Sariciftci, Inorg. Chem. Acta 361, 581 (2008).
  8. B.R. Saunders and M.L. Turner, Adv. in Colloid and Interf. Sci. 138, 1 (2008).
  9. S.P. Low, N.H. Voecker, L.T. Canham, and K.A. Williams, Biomaterials 30, 2873 (2009).
  10. M. Wang, J.L. Coffer, K. Dorraj, P.S. Hartman, A. Loni, and L.T. Canham, Molec. Pharmac. 7(6), 2232 (2010).
  11. Y. Liu, T.S. Niu, L. Zhang, and J.S. Yang, Natural Sci. 2, 41 (2010).
  12. Xiao Liu Chang. NanoBiomed. Eng. 3, 73 (2011).
  13. Fundamentals of Silicon Integrated Device Technology. V.1. Oxidation, Diffusion, and Epitaxy, edited by R.M. Burger and R.P. Donovan (Englewood Cliffs, N.J., Prentice Hall, 1967).
  14. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
  15. K.E. Peterson, Proc. IEEE 70, 420 (1982).
  16. W. Lang, Mater. Sci. & Engin., R: Biomimetic Mater., Sens. and Syst. R17, 1 (1996).
  17. S. Riad, Thin Solid Films 370, 253 (2000).
  18. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, and N.A. ElGhamaz, Sol.-St. Electron. 49, 1314 (2005).
  19. C. Kelting, U. Weiler, T. Mayer, W. Jaegermann, S. Makarov, D. Wohrle, O. Abdallah, M. Kunst, and D. Schlettwein, Organic Electronics 7, 363 (2006).
  20. U.Weiler, T. Mayer, W. Jaegermann, C. Kelting, D. Schlettwein, S. Makarov, and D. Wohrle, J. Phys. Chem. B 108, 19398 (2004).
  21. I. Simkiene, J. Sabhataityte, G.J. Babonas, A. Reza, and J. Beinoras, Mater. Sci. Eng. C 26, 1007 (2006).
  22. B.K. Kang, N. Aratani, J.K. Lim, D. Kim, A. Osuka, and K.H. Yoo, Mater. Sci. Eng. C 26, 1023 (2006).
  23. Arroyo-Hernandez, Perez-Rigueiro, and Martinez-Duares. Mater. Sci. Eng. C 26, 938 (2006).
  24. M. Kittler, X. Xu, O.F. Vyvenko, M. Birkholz, W. Seifert et al., Mater. Sci. and Eng. C 26, 902 (2006).
  25. J.M. Buryak, Phil. Trans. R. Soc. A 364, 217 (2006).
  26. S.P. Low, N.H. Voelcker, L.T. Canham, and K.A. Williams, Biomaterials 15, 2873 (2009).
  27. S.P. Low, K.A. Williams, L.T. Canham, and N.H. Voelcker, J. Biomed. Mater. Res. A 93, 1124 (2010).
  28. T.Ya. Gorbach, P.S. Smertenko, S.V. Svechnikov, and M. Kuzma, Thin Solid Films 511–512, 494 (2006).
  29. T. Gorbach, V. Kostylyov, and P. Smertenko, Mol. Cryst. Liq. Cryst. 535, 174 (2011).
  30. T.Ya. Gorbach, R.Yu. Holiney, L.A. Matveeva, P.S. Smertenko, S.V. Svechnikov, E.F. Venger, R. Ciach, and M. Faryna, Thin Solid Films 336, 63 (1998).
  31. M. Kuzma, G. Wish, E. Sheregii, T.Ya. Gorbach, P.S. Smertenko, S.V. Svechnilov, R Ciach and A. Rakowska, Appl. Surf. Sci. 138–139, 465 (1999).
  32. M.D. Mashkovski, Drugs (Novaya Volna, Moscow, 2000) (in Russian).
  33. R. Foster, Organic Charge-Transfer Complexes (Academic Press, London, 1969).
  34. S. Huber and G. Calzaferri, Chem. Phys. Chem. 5, 239 (2004).
  35. O. Bossart, L. DeCola, S. Welter, and G. Calzaferri, Chem. Sur. J. 10, 2391 (2004).