• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 6, p.596-600
https://doi.org/10.15407/ujpe59.06.0596    Paper

Bariakhtar I.1,2,3, Nazarenko A.1,2,3,4

1 Institute of Magnetism, Nat. Acad. of Sci. of Ukraine
(36-b, Vernadsky Blvd., Kyiv 03142)
2 Boston College, Department of Physics
(140, Commonwealth Avenue, Chestnut Hill, MA 02467, USA)
3 Department of of Physics and Mathematics, NTU “KPI”
(37, Prosp. Peremogy, Kyiv 03056, Ukraine)
4 Harvard University, IAM-HUIT
(1033, Massachusetts Avenue, Cambridge, MA 02138, USA)

Potential Electron Scattering by Phosphorus Atom

Section: Solid matter
Original Author's Text: English

Abstract: The normal state temperature one- and two-particle Green’s functions are calculated within the framework of the conserving self-consistent approximation accounting for the fluctuations in the particle-particle channel for the attractive Hubbard model. The Pad´e continuation to the complex plane is used to study the pole structure of the retarded one-particle Green’s function. The momentum and temperature dependences of the positions of the leading quasiparticle poles are consistent with Bogolyubov’s picture, when the second leading pole emerges and rapidly moves toward the real axes. The non-Fermi liquid behavior of the first leading pole is detected at the intermediate coupling. The two-particle Green’s function is used to calculate the temperature dependence of the uniform static spin susceptibility, which is shown to exhibit the diamagnetic tendency, as the system approaches the superconducting phase transition.

Key words: attractive Hubbard model, one- and two-particle Green’s functions, quasiparticle pole.


  1. N.M. Plakida, High-Temperature Superconductivity: Experiment and Theory, (Springer, Berlin, 2012).
  2. J.-W. Mei et al., Phys. Rev. B 85, 134519 (2012);
    N.P. Armitage et al., Phys. Rev. Lett. 87, 147003 (2001);
    H. Ding et al., Nature 382, 51 (1996);
    Phys. Rev. Lett. 78, 2628 (1997);
  3. J.-W. Mei et al., Phys. Rev. B 85, 134519 (2012); N.P. Armitage et al., Phys. Rev. Lett. 87, 147003 (2001); H. Ding et al., Nature 382, 51 (1996); Phys. Rev. Lett. 78, 2628 (1997); A. Loesser et al., Science bf 273, 325 (1996).
  4. I.M. Vishik et al., New J. of Physics 12, 105008 (2010).
  5. A. Bugrij and V. Loktev, Low Temp. Phys. 35, 770 (2009).
  6. C. Sa de Melo, M. Randeria, and J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202, (1993).
  7. V. Loktev et al., Phys. Rep. 349, 1 (2001).
  8. See, e.g., A.B. Migdal Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Wiley, New York, 1967).
  9. H.J. Vidberg and J.W. Serene, J. Low Temp. Phys. 29, 179 (1977).
  10. I. Bariakhtar and A. Nazarenko, Research Bulletin of NTUU "KPI", to be published (2014).
  11. A. Nazarenko and J.R. Engelbrecht, Europhys. Lett. 51, 96 (2000).
  12. J.M. Singer et al., Phys. Rev. 54, 1286 (1996).
  13. C.M. Varma, in: Physics of High-Temperature Superconductors (Springer, Berlin, 1992), p. 137.
  14. M. Randeria, N. Trivedi, A. Moreo, and R.T. Scalettar, Phys. Rev. Lett. 69, 2001 (1992).