• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 5, p.531-540
https://doi.org/10.15407/ujpe59.05.0531    Paper

Sobol O.O.

Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine; e-mail: sobololeks@ukr.net)

Variational Method for the Calculation of Critical Distance between Two Coulomb Centers in Graphene

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The supercritical instability in a system of two identical charged impurities in gapped graphene described in the continuous limit by the two-dimensional Dirac equation has been studied. The case where the charge of each impurity is subcritical, but their sum exceeds the critical value calculated in the version with a single Coulomb center, is considered. Using the developed variational method, the dependence of the critical distance Rcr between the impurities on their total charge is calculated. The Rcr-value is found to grow as the total impurity charge increases and the quasiparticle band gap decreases. The results of calculations are compared with those obtained in earlier researches.

Key words: graphene, supercritical instability, critical distance, Kantorovich variational method.


  1. P.R. Wallace, Phys. Rev. 71, 622 (1947).
  2. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Science 306, 666 (2004).
  3. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
  4. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
  5. V.P. Gusynin, S.G. Sharapov, and J.P. Carbotte, Int. J. Mod. Phys. B 21, 4661 (2007).
  6. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Adv. Phys. 59, 261 (2010).
  7. A.F. Young and P. Kim, Nature Phys. 5, 222 (2009).
  8. Y. Wang et al., Science 340, 734 (2013).
  9. I.Ya. Pomeranchuk and Y.A. Smorodinsky, J. Phys. USSR 9, 97 (1945).
  10. Ya.B. Zeldovich and V.N. Popov, Sov. Phys. Usp. 14, 673 (1972).
  11. W. Greiner, B. M¨uller, and J. Rafelski, Quantum Electrodynamics of Strong Fields, (Springer, Berlin, 1985).
  12. S.S. Gershtein and Ya.B. Zeldovich, Sov. Phys. JETP 30, 358 (1970).
  13. J. Rafelski, L.P. Fulcher, and W. Greiner, Phys. Rev. Lett. 27, 958 (1971).
  14. B. M¨uller, H. Peitz, J. Rafelski, and W. Greiner, Phys. Rev. Lett. 28, 1235 (1972).
  15. M.S. Marinov and V.S. Popov, Sov. Phys. JETP 41, 205 (1975).
  16. A.V. Shytov, M.I. Katsnelson, and L.S. Levitov, Phys. Rev. Lett. 99, 236801 (2007); 99, 246802 (2007).
  17. V.M. Pereira, J. Nilsson, and A.H. Castro Neto, Phys. Rev. Lett. 99, 166802 (2007).
  18. O.V. Gamayun, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 80, 165429 (2009).
  19. O.O. Sobol, E.V. Gorbar, and V.P. Gusynin, Phys. Rev. B 88, 205116 (2013).
  20. Bateman Manuscript Project, Higher Transcendental Functions, edited by A. Erd’elyi (McGraw-Hill, New York, 1953), Vol. 2.
  21. V.S. Popov, Sov. J. Nucl. Phys. 14, 257 (1972).
  22. V.S. Popov, Phys. At. Nucl. 64, 367 (2001).
  23. M.S. Marinov, V.S. Popov, and V.L. Stolin, J. Comp. Phys. 19, 241 (1975).
  24. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge Univ. Press, New York, 2012).
  25. I.S. Gradshtein and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, Orlando, 1980).
  26. P.F. Byrd and M.D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists (Springer, Berlin, 1971).