• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 4, p. 385-395
https://doi.org/10.15407/ujpe59.04.0385    Paper

Zhukhovitskii D.I.1, Fortov V.E.1, Molotkov V.I.1, Lipaev A.M.1, Naumkin V.N.1, Thomas H.M.2, Ivlev A.V.2, Morfill G.E.2

1 Joint Institute of High Temperatures, Russian Academy of Sciences
(Bd. 2, 13, Izhorskaya Str., Moscow 125412, Russia; e-mail: dmr@ihed.ras.ru)
2 Max-Planck-Institut f¨ur Extraterrestrische Physik
(Giessenbachstrasse, 85748 Garching, Germany)

Subsonic Motion of Projectile in a Fluid Complex Plasma under Microgravity Conditions

Section: Plasmas and gases
Language: English

Abstract: Subsonic motion of a large particle moving through the bulk of a dust crystal formed by negatively charged small particles is investigated, by using the PK-3 Plus laboratory on the board of the International Space Station. Tracing the particle trajectories shows that the large particle moves almost freely through the bulk of a plasma crystal, while dust particles move along characteristic α-shaped pathways near the large particle. We develop a theory of the nonviscous motion of dust particles near a large particle and calculate particle trajectories. The deformation of a cavity around a large projectile moving with subsonic velocity in the cloud of small dust particles is investigated with a due regard for the friction between dust particles and atoms of a neutral gas. The pressure of a dust cloud at the surface of a cavity around the projectile can become negative, which entails the emergence of a considerable asymmetry of the cavity, i.e., the cavity deformation. The corresponding threshold velocity is calculated, which is found to decrease with increasing the cavity size. A good agreement with experiment validates our approach.

Key words: dusty plasma, plasma crystal, nonviscous motion, cavity deformation.


  1. Complex and Dusty Plasmas: from Laboratory to Space, edited by V.E. Fortov and G.E. Morfill (CRC Press, Boca Raton, 2009).
  2. J.H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).
  3. H. Thomas, G.E. Morfill, V. Demmel, J.Goree, B. Feuerbacher, and D. M¨ohlmann, Phys. Rev. Lett. 73, 652 (1994).
  4. Y. Hayashi and S. Tashibana, Jpn. J. Appl. Phys. 33, L804 (1994).
  5. S.V. Vladimirov, K. Ostrikov, and A.A. Samarian, Physics and Applications of Complex Plasmas (Imperial College, London, 2005).
  6. V. Fortov, A. Ivlev, S. Khrapak, A. Khrapak, and G. Morfill, Phys. Rep. 421, 1 (2005).
  7. G.E. Morfill and A.V. Ivlev, Rev. Mod. Phys. 81, 1353 (2009).
  8. P.K. Shukla and B. Eliasson, Rev. Mod. Phys. 81, 25 (2009).
  9. M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).
  10. G.E. Morfill, U. Konopka, M. Kretschmer, M. Rubin-Zuzic, H.M. Thomas, S.K. Zhdanov, and V. Tsytovich, New J. Phys. 8, 7 (2006).
  11. D. Caliebe, O. Arp, and A. Piel, Phys. of Plasmas 18, 073702 (2011).
  12. A. Piel, O. Arp, M. Klindworth, and A. Melzer, Phys. Rev. E 77, 026407 (2008).
  13. K.O. Menzel, O. Arp, and A. Piel, Phys. Rev. E 83, 016402 (2011).
  14. O. Arp, D. Caliebe, and A. Piel, Phys. Rev. E 83, 066404 (2011).
  15. M. Schwabe, S.K. Zhdanov, H.M. Thomas, A.V. Ivlev, M. Rubin-Zuzic, G.E.Morfill, V.I. Molotkov, A.M. Lipaev, V.E. Fortov, and T. Reiter, New J. Phys. 10, 033037 (2008).
  16. G.E. Morfill, H.M. Thomas, U. Konopka, H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys. Rev. Lett. 83, 1598 (1999).
  17. S.A. Khrapak, B.A. Klumov, P. Huber, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, H.M. Thomas, A.V. Ivlev, G.E. Morfill, O.F. Petrov et al., Phys. Rev. Lett. 106, 205001 (2011).
  18. H.M. Thomas, G.E. Morfill, V.E. Fortov, A.V. Ivlev, V.I. Molotkov, A.M. Lipaev, T. Hagl, H. Rothermel, S.A. Khrapak, R.K. Suetterlin et al., New J. Phys. 10, 033036 (2008).
  19. M. Schwabe, K. Jiang, S. Zhdanov, T. Hagl, P. Huber, A.V. Ivlev, A.M. Lipaev, V.I. Molotkov, V.N. Naumkin, K.R. S¨uutterlin et al., EPL 96, 55001 (2011).
  20. M.-C. Chang, Y.-P. Tseng, and I. Lin, Phys. of Plasmas 18, 033704 (2011).
  21. D. Samsonov, J. Goree, H.M. Thomas, and G.E. Morfill, Phys. Rev. E 61, 5557 (2000).
  22. D.I. Zhukhovitskii, V.E. Fortov, V.I. Molotkov, A.M. Lipaev, V.N. Naumkin, H.M. Thomas, A.V. Ivlev, M. Schwabe, and G.E. Morfill, Phys. Rev. E 86, 016401 (2012).
  23. A.V. Ivlev and D.I. Zhukhovitskii, Phys. Plasmas 19, 093703 (2012).
  24. V.E. Fortov, O.F. Petrov, A.D. Usachev, and A.V. Zobnin, Phys. Rev. E 70, 046415 (2004).
  25. J. Goree, G.E. Morfill, V.N. Tsytovich, and S.V. Vladimirov, Phys. Rev. E 59, 7055 (1999).
  26. V. Nosenko, A.V. Ivlev, and G.E. Morfill, Phys. Plasmas 17, 123705 (2010).
  27. V.A. Schweigert, I.V. Schweigert, V. Nosenko, and J. Goree, Phys. Plasmas 9, 4465 (2002).
  28. B. Liu, J. Goree, V. Nosenko, and L. Boufendi, Phys. Plasmas 10, 9 (2003).
  29. B. Buttensch¨on, M. Himpel, and A. Melzer, New J. Phys. 13, 023042 (2011).
  30. L.D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1959).
  31. D.I. Zhukhovitskii, A.V. Ivlev, V.E. Fortov, and G.E. Morfill, Phys. Rev. E 87, 063108 (2013).
  32. K.R. S¨utterlin, A. Wysocki, A.V. Ivlev, C. R¨ath, H.M. Thomas, M. Rubin-Zuzic, W.J. Goedheer, V.E. Fortov, A.M. Lipaev, V.I. Molotkov et al., Phys. Rev. Lett. 102, 085003 (2009).