• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 4, p. 411-414
https://doi.org/10.15407/ujpe59.04.0411    Paper

Hayashi Ya., Masaki Ya., Yamada R.

Kyoto Institute of Technology
(Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan)

Synthesis of Single-Walled Carbon Nanotubes in Dusty Glow-Discharge Plasma

Section: Solid matter
Language: English

Abstract: Carbon fine particles including single-walled carbon nanotubes (SWNTs) are synthesized by the hot-filament and plasma-assisted chemical vapor depositions, and their specific surface area is evaluated. Discharge was unstable with electrons depleted in plasma during the growth of fine particles because of the attachment of most electrons on them. The electron density and the dust charge decrease simultaneously in plasma with high dust density. The absolute dust potential is calculated, and the result indicates that a higher dust potential |VD| is realized in a higher density plasma, especially, under certain conditions of high density and large size for dusts. Carbon fine particles of larger surface areas are expected to be synthesized in higher density plasma owing to the defect induction in SWNTs by the energetic ion bombardment.

Key words: carbon nanotube, ion bombardment, dusty plasma, plasma-enhanced chemical vapor deposition.

References:

  1. A.C. Dillon et al., Nature 386, 377 (1997).
    https://doi.org/10.1038/386377a0
  2. S.M. Lee et al., J. Am. Chem. Soc. 123, 5059 (2001).
    https://doi.org/10.1021/ja003751+
  3. Y. Akai and S. Saito, Jpn. J. Appl. Phys. 42, 640 (2003).
    https://doi.org/10.1143/JJAP.42.640
  4. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).
    https://doi.org/10.1038/363603a0
  5. A. Thess et al., Science 273, 483 (1996).
    https://doi.org/10.1126/science.273.5274.483
  6. H.M. Cheng et al., Appl. Phys. Lett. 72, 3282 (1998).
    https://doi.org/10.1063/1.121624
  7. G. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari, and H. Kawarada, Jpn. J. Appl. Phys. 44, 1558 (2005).
    https://doi.org/10.1143/JJAP.44.1558
  8. Y. Hayashi, M. Imano, Y. Mizobata, and K. Takahashi, Plasma Sources Sci. Technol. 19, 034019 (2010).
    https://doi.org/10.1088/0963-0252/19/3/034019
  9. R. Yamada, Y. Masaki, and Y. Hayashi, to be published in Proc. JSAP-MRS Joint Symposia (2013).
  10. Y. Hayashi, M. Imano, Y. Kinoshita, Y. Kimura, and Y. Masaki, Jpn. J. Appl. Phys. 50, 08JF09 (2011).
    https://doi.org/10.7567/JJAP.50.08JF09
  11. Ph. Belenguer and J.P. Boeuf, Phys. Rev. A 41, 4447 (1990).
    https://doi.org/10.1103/PhysRevA.41.4447
  12. J.P. Boeuf and Ph. Belenguer, J. Appl. Phys. 71, 4751 (1992).
    https://doi.org/10.1063/1.350666
  13. Ph. Belenguer et al., Phys. Rev. A 46, 7923 (1992).
    https://doi.org/10.1103/PhysRevA.46.7923
  14. K. Tachibana, Y. Hayashi, T. Okuno, and T. Tatsuta, Plasma Sources Sci. Technol. 3, 314 (1994).
    https://doi.org/10.1088/0963-0252/3/3/012