• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 10, p.1001-1006
https://doi.org/10.15407/ujpe59.10.1001    Paper

Kravchuk V.P.

Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
(14b, Metrolohichna Str., Kyiv 03680, Ukraine; e-mail: vkravchuk@bitp.kiev.ua)

Stability of Magnetic Nanowires Against Spin-Polarized Current

Section: Solid matter
Original Author's Text: English

Abstract: The stability of the ground magnetization state of a thin magnetic nanowire against a longitudinal spin-polarized current is studied theoretically with the dipole-dipole interaction taken into account. The critical current, i.e. the minimum current, at which the instability of the ground state develops, is determined. The dependence of the critical current on the size and the shape of a transversal wire cross-section is clarified. Theoretical predictions are confirmed by numerical micromagnetic simulations.

Key words: magnetic nanowire, spin-current, spintronics, soliton.


  1. S.S.P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
  2. M. Kl¨aui, J. of Phys.: Cond. Mat. 20, 313001 (2008).
  3. M. Kl¨aui, P.-O. Jubert, R. Allenspach, A. Bischof, J.A.C. Bland, G. Faini, U. R¨udiger, C.A.F. Vaz, L. Vila, and C. Vouille, Phys. Rev. Lett. 95, 026601 (2005).
  4. A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki, Europhys. Lett. 69, 990 (2005).
  5. A.V. Khvalkovskiy, K.A. Zvezdin, Y.V. Gorbunov, V. Cros, J. Grollier, A. Fert, and A.K. Zvezdin, Phys. Rev. Lett. 102, 067206 (2009).
  6. V.P. Kravchuk, O.M. Volkov, D.D. Sheka, and Y. Gaididei, Phys. Rev. B 87, 224402 (2013).
  7. Y. Tserkovnyak, A. Brataas, and G.E. Bauer, J. of Magn. Magn. Mater. 320, 1282 (2008).
  8. Y.B. Bazaliy, B.A. Jones, and S.-C. Zhang, Phys. Rev. B 57, R3213 (1998).
  9. S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004).
  10. L. Berger, J. Appl. Phys. 49, 2156 (1978).
  11. Z. Li and S. Zhang, Phys. Rev. Lett. 92, 207203 (2004).
  12. D. Ralph and M. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
  13. G. Tatara, H. Kohno, and J. Shibata, Phys. Reports 468, 213 (2008).
  14. A. Brataas, A.D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012).
  15. Y. Gaididei, O.M. Volkov, V.P. Kravchuk, and D.D. Sheka, Phys. Rev. B 86, 144401 (2012).
  16. T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
  17. S.V. Tyablikov, Methods in the Quantum Theory of Magnetism (Plenum Press, New York, 1967)].
  18. A. Volkov and V. Kravchuk, Ukr. J. of Phys. 58, 667 (2013).
  19. R. Skomski, J. Phys. C 15, R841 (2003).
  20. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, and C.W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge Univ. Press, New York, 2010).
  21. J. Fernandez-Rossier, M. Braun, A.S. Nunez, and A.H. MacDonald, Phys. Rev. B 69, 174412 (2004).
  22. The Object Oriented MicroMagnetic Framework, developed by M.J. Donahue and D. Porter mainly, from NIST. We used the 1.2 5 release, URL http://math.nist.gov/oommf/.