• Українська
  • English

< | Next issue>

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 10, p.1026-1036
https://doi.org/10.15407/ujpe59.10.1026    Paper

Adamiv V.T.1, Bolesta I.M.2, Burak Ya.V.1, Gamernyk R.V.2, Dutka R.M.1, Karbovnyk I.D.2, Periv M.V.2, Teslyuk I.M.1

1 Institute of Physical Optics
(23, Dragomanov Str., Lviv 79005, Ukraine)
2 Ivan Franko National University of Lviv
(50, Dragomanov Str., Lviv 79005, Ukraine)

Formation and Optical Properties of Silver Nanoparticles in Li2B4O7−Gd2O3−Ag2O Borate Glass

Section: Nanosystems
Original Author's Text: Ukrainian

Abstract: The formation of metallic (silver) nanoparticles (AgNPs) in the near-surface layer of 97.0Li2B4O7–1.0Gd2O3–2.0Ag2O (Li2B4O7:Gd,Ag)glass at the annealing in vacuum or in air has been reported. The “bottom-up”mechanism of nanoparticle formation is suggested. A conclusion is drawn that the annealing in vacuum does not necessarily require the presence of reducing ions, whereas the formation of nanoparticles at the annealing in air is impossible without reducing agents. Structural defects play a crucial role in the AgNPs nucleation process. The intense plasmon absorption bands peaked at 400.4, 564.2, and 413.7 nm are observed in the absorption spectra of glasses enriched with AgNPs. The average radius of nanoparticles is calculated from the half-width of plasmon bands and falls within the interval of 1.0–1.5 nm. The nonlinear refractive index n2 related to plasmons in AgNPs is calculated from the normalized transmission and absorption spectra, is positive, and increases approximately 2–4 times as compared to that of Li2B4O7:Gd,Ag matrix.

Key words: borate glass, metallic Ag nanoparticles, plasmon resonance, nonlinear refractive index.

References:

  1. V.M. Shalaev, Phys. Rep. 272, 61 (1996).
    https://doi.org/10.1016/0370-1573(95)00076-3
  2. V.A. Markel and V.M. Shalaev, Phys. Rev. B 53, 2425 (1996).
    https://doi.org/10.1103/PhysRevB.53.2425
  3. V.A. Markel and V.M. Shalaev, Phys. Rev. B 53, 2437 (1996).
    https://doi.org/10.1103/PhysRevB.53.2425
  4. L.A. Blanco and F.J. Garcia de Abajo, J. Quant. Spectr. Rad. Transf. 89, 37 (2004).
    https://doi.org/10.1016/j.jqsrt.2004.05.009
  5. M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
    https://doi.org/10.1103/RevModPhys.57.783
  6. M.I. Stockman, V.M. Shalaev, M. Moskovits et al., Phys.Rev. B 46, 2821 (1992).
    https://doi.org/10.1103/PhysRevB.46.2821
  7. S.V. Karpov, V.S. Gerasimov, I.L. Isaev et al., Phys. Rev. B72, 2545 (2005).
    https://doi.org/10.1103/PhysRevB.72.205425
  8. H. Inouye, K. Tanaka, I. Tanahashi et al., Jpn. J. Appl. Phys. 39, 5132 (2000).
    https://doi.org/10.1143/JJAP.39.5132
  9. Y.-P. Sun, J.E. Riggs, H.W. Rollins et al., J. Phys. Chem. B 103, 77 (1999).
    https://doi.org/10.1021/jp9835014
  10. J. Staromlynska, J. McKay, and P. Wilson, J. Appl. Phys. 88, 1726 (2000).
    https://doi.org/10.1063/1.1303054
  11. K. Wundke, S. P¨otting, J. Auxier et al., Appl. Phys. Lett. 76, 10 (2000).
    https://doi.org/10.1063/1.125639
  12. M.A. Garcia, J. Phys. D 44, 283001 (2011).
    https://doi.org/10.1088/0022-3727/44/28/283001
  13. A.V. Red'kov, Fiz. Tverd. Tela 54, 1758 (2012).
  14. P.A. Obraztsov, A.V. Nashchekin, N.V. Nikonorov et al., Fiz. Tverd. Tela 55, 1180 (2013).
  15. Silver Nanoparticles, edited by D.P. Perez (In-Tech, Vukovar, Croatia, 2010).
  16. I.M. Bolesta, O.O. Kushnir, I.I. Kolych et al., Adv. Sci. Eng. Med. 6, 326 (2014).
    https://doi.org/10.1166/asem.2014.1498
  17. W. Soppe, F. Aldenkamp, and H.W. Hartog, J. Non-Cryst. Solids 91, 351 (1987).
    https://doi.org/10.1016/S0022-3093(87)80345-9
  18. Y. Ebata, H. Suzuki, S. Matsumura et al., Jpn. J. Appl. Phys. 22, 160 (1983).
    https://doi.org/10.7567/JJAPS.22S3.160
  19. S. Fan, G. Chen, W. Wang et al., J. Cryst. Growth 99, 811 (1997).
  20. B. Padlyak, W. Ryba-Romanowski, R. Lisiecki et al., J. Non-Cryst. Solids 356, 2033 (2010).
    https://doi.org/10.1016/j.jnoncrysol.2010.05.027
  21. B.V. Padlyak, N.A. Sergeev, M. Olczewski et al., Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 55, 25 (2014).
  22. R.E. Youngman and J.W. Zwanziger, J. Non-Cryst. Solids 168, 293 (1994).
    https://doi.org/10.1016/0022-3093(94)90342-5
  23. R.E. Youngman, S.T. Haubrich, J.W. Zwanziger et al., Science 269, 1416 (1995).
    https://doi.org/10.1126/science.269.5229.1416
  24. V.T. Adamiv, Ya.V. Burak, I.S. Girnyk et al., Funct. Mater. 20, 52 (2013).
    https://doi.org/10.15407/fm20.01.052
  25. V.T. Adamiv, Ya.V. Burak, I.S. Girnyk et al., Funct. Mater. 4, 415 (1997).
  26. K. Terashima, S.-H. Kim, and T. Yoko, J. Ceram. Soc. 76, 1601 (1995).
    https://doi.org/10.1111/j.1151-2916.1995.tb08857.x
  27. Ch. Chen, Y. Wu, and R. Li, Int. Rev. Phys. Chem. 8, 65 (1989).
    https://doi.org/10.1080/01442358909353223
  28. M. Abdel-Baki, F.A. Abdel-Wahab, and F. El-Diasty, J. Appl. Phys. 111, 073506 (2012).
    https://doi.org/10.1063/1.3698623
  29. V.T. Adamiv, I.M. Bolesta, Ya.V. Burak et al., Physica B 449C, 31 (2014).
    https://doi.org/10.1016/j.physb.2014.05.009
  30. Q. Jiao, D.Zhou, and X. Xu, Mater. Res. Bull. 51, 315 (2014).
    https://doi.org/10.1016/j.materresbull.2013.12.044
  31. M. Sheik-Bahae, A.A. Said, and E.W. Van Stryland, Opt. Lett. 14, 955 (1989).
    https://doi.org/10.1364/OL.14.000955
  32. M. Sheik-Bahae, A.A. Said, T.H. Wei et al., IEEE J. Quant. Electr. QE-26, 760 (1990).
    https://doi.org/10.1109/3.53394
  33. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  34. B.V. Nekrasov, Textbook of General Chemistry (Mir, Moscow, 1969).
  35. G.M. Arnold, J. Appl. Phys. 46, 4466 (1975).
    https://doi.org/10.1063/1.321422
  36. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
    https://doi.org/10.1007/978-3-662-09109-8
  37. J.M. Fern’andez Navarro, J. Toudert, Y. Rodr’ıguezLazcano et al., Appl. Phys. B 113, 205 (2013).
    https://doi.org/10.1007/s00340-013-5458-6
  38. I.S. Sinev, M. Petrov, A.K. Samasev et al., Nanoscale Res. Lett. 8, 260 (2013).
    https://doi.org/10.1186/1556-276X-8-260
  39. J.F. Reintjes, Nonlinear Optical Processes in Liquids and Gases (Academic Press, Orlando, 1984).
  40. Yu. Kaganovski, E. Mogilko, A.A. Lipovskii et al., J. Phys. Conf. Ser. 61, 508 (2007).
    https://doi.org/10.1088/1742-6596/61/1/103
  41. C. Mohr, M. Dubiel, and H. Hofmeister, J. Phys. Condens. Matter 13, 525 (2001).
    https://doi.org/10.1088/0953-8984/13/3/312
  42. A.V. Red'kov, V.V. Zhurina, and A.A. Lipovskii, J. NonCryst. Solids 376, 152 (2013).
    https://doi.org/10.1016/j.jnoncrysol.2013.05.037