• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2015, Vol. 59, N 10, p.1007-1012
https://doi.org/10.15407/ujpe59.10.1007    Paper

Danilevich A.G.

Institute of Magnetism,
Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
(36b, Academician Vernadsky Blvd., Kyiv 03142, Ukraine; e-mail: alek_tony@ukr.net)

The Influence of Magnetoelastic Interaction on the First Transverse Sound in a Ferromagnet of Cubic Symmetry in a Vicinity of the Martensitic Transformation

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: The dispersion laws of coupled magnetoelastic waves have been calculated for all ground states of a ferromagnet with the cubic symmetry. It is shown that the magnetoelastic interaction with the first transverse sound takes place for all equilibrium directions of the magnetization vector. The obtained dispersion laws testify that the magnetoelastic interaction coefficient depends on the magnetization and wave vector directions. The quantitative calculations of the dispersion relations for the shape memory alloy Ni–Mn–Ga are made on the basis of the obtained results. The results of research demonstrate that a decrease in the elastic modulus gives rise to an appreciably stronger magnetoelastic interaction.

Key words: magnetoelastic interaction, dispersion law, cubic ferromagnet, shape memory alloy, elastic modulus.


  1. C. Kittel, Phys. Rev. 110, 836 (1958).
  2. A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminskii, Zh. Eksp. Teor. Fiz. ` 35, 228 (1958).
  3. A.I. Akhiezer, V.G. Bar'yakhtar, and S.V. Peletminskii, Spin Waves (North Holland, Amsterdam, 1968).
  4. V.G. Bar'yakhtar and E.A. Turov, in Spin waves and Magnetic Excitations, edited by A.S. Borovik-Romanov and S.K. Sinha (North Holland, Amsterdam, 1988), Part 2, p. 333.
  5. V.A. Chernenko and V.V. Kokorin, in Proceedings of the Intern. Conference on Martensitic Transformations 1992 (Monterey Institute for Advanced Studies, 1993), p. 1205.
  6. V.A. Chernenko, J. Pons, C. Segu’ı, and E. Cesari, Acta Materialia 50, 53 (2002).
  7. L. Dai, J. Cullen, and M. Wuttig, J. Appl. Phys. 95, 6957 (2004).
  8. O. Heczko, H. Seiner, P. Sedl´ak, J. Kopeˇcek, and M. Landa, J. Appl. Phys. 111, 07A929 (2012).
  9. V.G. Bar'yakhtar and D.A. Yablonskii, Fiz. Met. Metalloved. 43, 645 (1977).
  10. V.V. Kokorin and M. Wuttig, J. Magn. Magn. Mater. 234, 25 (2001).
  11. V.G. Bar'yakhtar, A.G. Danilevich, and V.A. L'vov, Ukr. J. Phys. 56, 1068 (2011).
  12. J.K. Liakos and G.A. Saunders, Phil. Mag. A 46, 217 (1982).
  13. V.A. L'vov, E.A. Gomonaj, and V.A. Chernenko, J. Phys.: Condens. Matter 10, 4587 (1998).
  14. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1984).
  15. P.J. Webster, K.R.A. Ziebeck, S.L. Town, and M.S. Peak, Phil. Mag. B 49, 295 (1984).
  16. R. Tickle and R.D. James, J. Magn. Magn. Mater. 195, 627 (1999).
  17. L. Dai, J. Cui, and M. Wuttig, Proc. SPIE 5053, 595 (2003).
  18. A.G. Danilevich and V.A. L'vov, J. Magn. Magn. Mater. 333, 108 (2013).