• Українська
  • English

< | >

Current issue   Ukr. J. Phys. 2014, Vol. 59, N 1, p.34-37
https://doi.org/10.15407/ujpe59.01.0034    Paper

Belyaev A.E.1, Klyui N.I.1, Konakova R.V.1, Luk’yanov A.M.1, Sveshnikov Yu.M.2, Klyui A.M.3

1 V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
(41, Prosp. Nauky, Kyiv 03028, Ukraine; e-mail: klyui@isp.kiev.ua)
2 Close Corporation “Elma-Malakhit”
(Zelenograd, Russia)
3 Taras Shevchenko National University of Kyiv
(2, Prosp. Academician Glushkov, Kyiv 03022, Ukraine)

Optical Properties of Irradiated Epitaxial GaN Films

Section: Solid matter
Original Author's Text: Ukrainian

Abstract: The influence of a microwave treatment (MWT) on the optical properties of hexagonal GaN films has been studied. To estimate the internal mechanical strains and the degree of structural perfection in a thin near-surface layer of the film, the electroreflectance (ER) method is used. The ER spectra are measured in the interval of the first direct interband transitions. It has been shown that the MWT results in the relaxation of internal mechanical strains in the irradiated films. In addition, the structural perfection in the thin near-surface layer of the irradiated film became higher. A mechanism that includes resonance effects and the local heating of the film defect regions is proposed to explain the effects observed.

Key words: gallium nitride, epitaxial film, electroreflectance, microwave treatment, broadening parameter, internal strain.


  1. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997).
  2. A.G. Vasil'ev, Yu.V. Kolkovskii, and Yu.A. Kontsevoi, UHF Devices and Equipment Based on Wide-Gap Semiconductors (Tekhnosfera, Moscow, 2011) (in Russian).
  3. R. Quay, Gallium Nitride Electronics (Springer, Berlin, 2008).
  4. Chang Bao Han, Chuan He, Xiao Bo Meng et al., Opt. Express 20, 5636 (2012).
  5. Jae Hyung Yi, Chinkyo Kim, Min Hong Kim et al., J. Korean Phys. Soc. 39, S364 (2001).
  6. Z.Z. Chen, Z.X. Qin, Y.Z. Tong et al., Physica B 334, 188 (2003).
  7. D.G. Kent, K.P. Lee, A.P. Zang et al., Solid State Electr. 45, 467 (2001).
  8. Ming-Kwei Lee, Chen-Lin Ho, and Jia-Yi Zeng, Electrochem. Solid-State Lett. 11, D9 (2008).
  9. A.E. Belyaev, N.I. Klyui, R.B. Konakova et al., Fiz. Tekh. Poluprovodn. 46, 317 (2012).
  10. A.V. Kurakin, S.A. Vitusevich, S.V. Danylyuk et al., J. Appl. Phys. 103, 083707 (2008).
  11. A.E. Belyaev, N.S. Boltovets, S.A. Vitusevich et al., Fiz. Tekh. Poluprovodn. 44, 775 (2010).
  12. S.G. Sundaresan, M. Murthy, M.V. Rao et al., Semicond. Sci. Technol. 22, 1151 (2007).
  13. G.S. Aluri, M. Gowda, N.A. Mahadik et al., J. Appl. Phys. 108, 083103 (2010).
  14. M.V. Rao, in Advances in Induction and Microwave Heating of Mineral and Organic Materials, edited by S. Grundas (InTech, 2011).
  15. V.I., V.A. Perevoshchikov, and V.D. Skupov, Pis'ma Zh. Tekhn. Fiz. 20, No. 8, 14 (1994).
  16. I.B. Ermolovich, G.V. Milenin, V.V. Milenin et al., Zh. Tekhn. Fiz. 77, No. 9, 71 (2007).
  17. E.D. Atanassova, A.E. Belyaev, R.V. Konakova, P.M. Lytvyn, V.V. Milenin, V.F. Mitin, and V.V. Shynkarenko, Effect of Active Actions on the Properties of Semiconductor Materials and Structures (NTC "Institute for Single Crystals", Kharkiv, 2007).
  18. Y.S. Huang, F.H. Pollak, S.S. Park et al., J. Appl. Phys. 94, 899 (2003).
  19. B. Gil, O. Briot, and R.L. Aulombard, Phys. Rev. B 52, R17028 (1995).
  20. A.E. Belyaev, E.F. Venger, I.B. Ermolovich, R.V. Konakova, P.M. Lytvyn, V.V. Milenin, I.V. Prokopenko, G.S. Svechnikov, E.A. Soloviev, and L.I. Fedorenko, Effect of Microwave and Laser Radiations on the Parameters of Semiconductor Structures (V.E. Lashkaryov Institute of Semiconductor Physics, Kyiv, 2002).
  21. Technology of Gallium Nitride Crystal Growth, edited by D. Ehrentraut, E. Meissner, and M. Bockowski (Springer, Berlin, 2010).